
 Advanced search

Linux Journal Issue #110/June 2003

Features

Game Programming with the SDL by Bob Pendleton
With this well-tested library, you can easily develop games for
Linux and non-Linux platforms.

Embedding an SQL Database with SQLite by Michael Owens
You don't have to start doing DBA work just to run your SQL
application on an embedded system or demo laptop. Simplify
your life.

A Template-Based Approach to XML Parsing in C++ by John Dubchak
Add XML support to your project with the Apache Software
Foundation's Xerces parser and some C++ code.

Speeding Up the Scientific Process by Sam Clanton
Get rapid development and fast number crunching when you
integrate critical functions in C into a Matlab project.

Indepth

Lighting Simulation with Radiance by Anthony W. Kay
Turn simple data files into amazing 3-D scenes using free
software.

Linux for Science Museums by Len Kaplan
Love interactvie museums? Volunteer to help make your favorite
museum even cooler.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/110/6410.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6655.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6479.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632.html

Embedded

Driving Me Nuts The Driver Model Core, Part I by Greg Kroah-
Hartman
Memory Leak Detection in C++ by Cal Erickson

It's never too soon to fix bugs, and you can start using these
tools as soon as your project will compile.

Toolbox

At the Forge Customizing Plone by Reuven M. Lerner
Paranoid Penguin Using Firewall Builder, Part II by Mick Bauer

Columns

Linux for Suits : Click-N-Run: an Easier Future for Customers? by
Doc Searls
EOF Re-energizing the Stunted PC Revolution by Michael L.
Robertson

Reviews

The Sharp Zaurus SL-C700 by Guylhem Aznar
SCO Linux 4 by Steve R. Hastings
C++ Templates: The Complete Guide by Michael Baxter

Departments

Letters
upFRONT
From the Editor
On the Web
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6717.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6556.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6725.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6718.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6702.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6654.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6710.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6685.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6707.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6747.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6745.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6744.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Game Programming with the Simple DirectMedia Layer

Bob Pendleton

Issue #110, June 2003

Put the library behind Tux Racer and the Linux version of Civilization into your
game.

Simple DirectMedia Layer (SDL, www.libsdl.org) is a simple, yet powerful, cross-
platform game and multimedia development library. The library was developed
by Sam Latinga while he was working for Loki Software, Inc. and was used in
their commercial game projects. SDL was developed to meet the needs of game
developers working in a multi-OS environment and was used in the Linux
versions of Maelstrom, Hopkins FBI, Civilization: Call to Power, Descent 2,
MythII: Soulblighter, Railroad Tycoon II, Tux Racer and many more. The SDL
web site lists hundreds of games and applications written using SDL.

SDL officially supports Linux, Windows, BeOS, Mac OS, Mac OS X, FreeBSD,
OpenBSD, BSD/OS, Solaris and IRIX. SDL also works with Windows CE, AmigaOS,
Atari, QNX, NetBSD, AIX, Tru64 UNIX and SymbianOS. However, those OSes are
not yet officially supported. This means if you write your application using SDL,
you can port it with minimal rework to all those OSes. SDL provides a portable
way to write games and multimedia applications on every major OS currently in
use.

Installing SDL

If you are using a recent version of Linux, you probably have a complete SDL
installation. In fact, a quick check of /usr/bin using ldd on my Red Hat 8.0
system found eight programs that depend on SDL.

The following commands show whether the SDL libraries and C/C++ include
files are installed on your system:

locate SDL.h
locate libSDL
locate sdl-config

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.libsdl.org

If all of these commands report the file was found, most likely you have a
complete SDL installation, and you need only to make sure it is up to date. The
sdl-config program checks the SDL version and acquires compile and link flags
for your SDL applications. If sdl-config was found, run:

sdl-config --version

to see which version of SDL you have. If sdl-config reports a version less than
1.2.4, you should install newer libraries. Like most open-source projects, SDL is
under constant development, so if you are using SDL for development, check
for new versions regularly or join one of the SDL mailing lists to keep track of
library updates.

If SDL is not installed, you need to download and install it. Your distribution
probably has precompiled SDL packages, so you can check your regular source
of packages first. If it's up to date, the easiest way to get started is to install the
devel or dev packages for SDL from your distribution.

The file sdl-install.sh included with the source code used in this article is a shell
script that downloads and installs version 1.2.5 of SDL and all its add-on
libraries. The script must be run as root in the directory where you want the
source for SDL. The script downloads the following:

• SDL—the core of SDL (www.libsdl.org/download.php)
• SDL_net—the network I/O library (www.libsdl.org/projects/SDL_net)
• SDL_image—the image reading library (www.libsdl.org/projects/

SDL_image)
• SDL_mixer—the sound file loading and mixing library (www.libsdl.org/

projects/SDL_mixer)
• SDL_ttf—the TrueType font library (www.libsdl.org/projects/SDL_ttf)

If you don't use sdl-install.sh, visit the web pages listed above, download the
files, unpack them and follow the instructions in the appropriate README files
to install the libraries. Test your new installation by running:

sdl-config --version

If it doesn't run or gives a version number lower than the version you installed,
the installation didn't work. In my experience, this happens when I don't follow
the instructions or leave an old version of SDL installed in a different place. If
locate sdl-config lists more than one location, either delete the old SDL
installation, something I hate to do, or re-install over the old version. The sdl-
install.sh file shows how to use ./configure --prefix to install SDL anywhere you
want, but it's safest and easiest to install in the default location.

http://www.libsdl.org/download.php
http://www.libsdl.org/projects/SDL_net
http://www.libsdl.org/projects/SDL_image
http://www.libsdl.org/projects/SDL_image
http://www.libsdl.org/projects/SDL_mixer
http://www.libsdl.org/projects/SDL_mixer
http://www.libsdl.org/projects/SDL_ttf

SDL documentation can be found at www.libsdl.org/docs.php. On-line
documents are at sdldoc.csn.ul.ie. Support library documentation is either
linked from their download pages, included with the source code or embedded
in the .h files. Sample programs are included with SDL, and its support libraries
are great starting places for your own projects.

SDL Example

The file bounce.cpp [available at ftp.linuxjournal.com/pub/lj/listings/
issue110/6410.tgz] is a game written using SDL for input and graphics and
SDL_ttf to load TrueType fonts. The game itself is a little over 1,300 lines of C++,
and the complete package includes the source code, images, a TrueType font, a
makefile, sdl-install.sh and the license files for the font and images used in the
game. Finding fonts, graphics and sounds that you can use legally in your
games can be more work than writing the game.

To get started learning SDL, download the Bounce source code from the Linux
Journal FTP site and unpack it with tar -xzvf bounce.tar.gz. Then run make to
build the program. Run the program by typing bounce at the command line.
You can run it in full-screen mode by typing bounce -fullscreen. The plot of the
game is that Earth has started wandering around the solar system and is in
danger of falling into the Sun. Your job is to keep Earth out of the Sun by hitting
it with the Moon. You score a point each time you hit the Earth with the Moon,
and the game scores every time the Earth hits the Sun. The game is designed to
show off features of SDL, not to be the most interesting game you've ever seen.

Figure 1. The Game Bounce

Initialize SDL

SDL must be initialized before any SDL functions are used by calling SDL_Init():

if (-1 == SDL_Init((SDL_INIT_VIDEO |
 SDL_INIT_TIMER |
 SDL_INIT_EVENTTHREAD)))

http://www.libsdl.org/docs.php
http://sdldoc.csn.ul.ie
https://secure2.linuxjournal.com/ljarchive/LJ/listings/110/6410.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/110/6410.tgz

{
 ...
}

The parameter to SDL_Init() identifies the subsystems that need to be
initialized. Here, I tell SDL to initialize the video, timer and subsystems and to
use thread-based event processing. I also could have used the catch-all
SDL_INIT_EVERYTHING, but you should initialize only the parts of SDL that your
program uses. There is no reason to initialize the joystick or CD-ROM if you are
not going to use them. You can initialize and shut down subsystems at any time
by the use of the SDL_InitSubSystem() and SDL_QuitSubSystem() functions.

It is important to shut down SDL with a call to SDL_Quit() before your program
shuts down. SDL_Quit() shuts down all SDL subsystems, frees all system
resources used by SDL and restores the video mode. It is good practice to use
atexit() to make sure that SDL_Quit() runs when your program terminates.
Failure to call SDL_Quit() can leave your computer in a strange video mode.

Set the Video Mode

When selecting a video mode, decide whether to run in a window or as a full-
screen application. Then, choose the size of the window or screen. If you go
with a window, decide whether the user can resize it. Then, choose how to
adapt to the color depth of the screen. In Bounce I use something like:

options = SDL_ANYFORMAT | SDL_FULLSCREEN;
screen = SDL_SetVideoMode(640, 480,
 0,
 options);

The first two parameters specify the width and height, in pixels, of the screen or
window in which the program runs. To use a particular width and height in full-
screen mode, the screen section of your XF86Config-4 (or XF86Config for some
versions of X) file must list the specified size. If Bounce won't run in full-screen
mode on your machine, it is most likely because you don't have a 640 × 480
mode set up in the screen section of your XF86Config-4 file.

The third parameter specifies the number of bits per pixel. Or, if it is set to 0
(zero), it tells SDL to use the current display depth. It is best to adapt the game
to the current display depth rather than counting on every machine on which
the code will ever run to support your desired pixel format.

The last parameter lets you give SDL detailed instructions on how to set up the
video mode. There are nearly a dozen options from which to chose. In Bounce, I
use SDL_ANYFORMAT to let SDL pick the best available mode. This option
forces your code to adapt to whatever pixel depth you have, but using it can
provide better performance at the cost of some extra coding. The
SDL_FULLSCREEN option tells SDL to set a full-screen mode.

The value returned by SDL_SetVideoMode() is a pointer to an SDL_Surface
structure. This structure describes the screen in great detail. If the pointer is
NULL, the video mode you requested is not available. But, getting a non-NULL
value doesn't mean you got everything you wanted. Check the flags field of this
structure against the options you specified. I have found it is best to ask for
little and work with what I receive, that way I avoid hard wiring my machine and
OS restrictions in my code.

Now that the video mode is configured, use SDL_WM_SetCaption() to set the
window title and icon name. This isn't necessary; it's one of those touches that
make the program a little easier to use:

SDL_WM_SetCaption("Bounce", "Bounce")

Loading Resources

Before Bounce can start up, it must load and initialize the resources it uses.
Bounce has to initialize colors, load a few images and load the font it uses to
draw text. Because the video mode was set using SDL_ANYFORMAT, all of these
resources have to be converted to match an arbitrary display format. The
following code creates a red pixel in the format we need:

SDL_PixelFormat *pf = screen->format;
int red = SDL_MapRGB(pf, 0xff, 0x00, 0x00);

The SDL_PixelFormat structure is a description of the screen pixels, and
SDL_MapRGB() converts a standard 24-bit RGB color representation into a pixel
value that shows that color when drawn on that screen.

Loading images is slightly more complex:

SDL_Surface *s0, *s1;
s0 = SDL_LoadBMP(name);
s1 = SDL_DisplayFormat(s0);
SDL_SetColorKey(s1,
 (SDL_SRCCOLORKEY |
 SDL_RLEACCEL),
 black);
SDL_FreeSurface(s0);

Core SDL includes SDL_LoadBMP(), which loads a .bmp format image as an
SDL_Surface. SDL_image provides routines for loading many other image
formats. The image is in the format in which it was created. We convert it to the
display format using SDL_DisplayFormat(). SDL_SetColorKey() is used to tell SDL
that when it copies (blits) this surface into another surface, it should ignore all
the black pixels. I do this so that when I copy an image of the Earth onto the
screen, none of the black background gets copied, and only the pixels inside
the round shape of the Earth are touched. The SDL_RLEACCEL flag tells SDL to

run length encode (RLE) the image. Using RLE-encoded images speeds up
image copying.

Bounce uses one TrueType font but in three different sizes, two different colors
and three different styles. Using the SDL_ttf library, I wrote a routine that loads
a TrueType font, renders each of the ASCII characters in the range of 0-127 as
an SDL_Surface, converts each character to match the screen and saves the
height, width and advance of each letter so I can draw strings on the screen.

The Main Loop

SDL provides an event-based input system, much like that used by X, Mac OS
and Windows. When a key is pressed or the mouse is moved, an event is placed
in a queue. The program can either wait for events using SDL_WaitEvent() or
poll for events using SDL_PollEvent(). The main loop must process events,
update the game state, draw the next frame and repeat until done.

The decision to wait or poll for events affects the overall structure of the game.
I chose to wait for events and use a heartbeat timer to drive the action. I like
this combination because it lets the program handle events whenever they
occur while controlling CPU usage. Both of those qualities are important in
networked games.

The timer is initialized using:

timer = SDL_AddTimer(10, timerCallback, NULL);

This tells SDL to call a routine named timerCallBack every ten milliseconds. My
timer callback uses SDL_PushEvent() to send an event. Because timer callbacks
run in a separate thread, they can send events even though the game is
stopped, waiting for events. When it receives a timer event, Bounce checks to
see if it is time to draw another frame. The timer makes sure the program
doesn't try to draw more than 100 frames/second, while allowing the game to
run at a slower rate if it must. On my machine, it runs at 85 frames/second,
which matches the refresh rate of my monitor.

Bounce is organized into several different pages. The main loop handles events
that are common among all the pages, such as quitting the program when you
press Esc or pausing the game when you press F1. After the main loop has
looked at an event, it passes the event to the current page. Each page is a
function that takes an SDL_Event as its parameter. Each page has the
responsibility to handle events, keep track of the time and draw the screen.
Although this approach leads to some duplicate code, it gives the programmer
greater flexibility, and it lends itself to an object-oriented design where each

page is an instance of a page class. The following example shows parts of the
main loop and illustrates how events are passed to the individual pages:

while ((!done) && SDL_WaitEvent(&event))
{
 switch (event.type)
 {
 case SDL_QUIT:
 done = true;
 break;
 case SDL_KEYDOWN:
 switch(event.key.keysym.sym)
 {
 case SDLK_ESCAPE:
 done = true;
 break;
 case SDLK_F1:
 play = !play;
 break;
 }
 break;
 }
 if (play &&
 (!done) &&
 (NULL != currentPage))
 {
 currentPage(&event);
 }
}

The global variable currentPage points to the implementation of the current
page. When one page wants to start another page, it initializes the new page
and sets the pointer to that page. Bounce has three pages: the welcome page
you see when the program starts, another page handles game play, and the
“You Won/You Lost” message is the third page.

The event handler in the welcome page looks like:

switch (e->type)
{
 case SDL_USEREVENT:
 switch (e->user.code)
 {
 case MY_TIMEREVENT:
 now = SDL_GetTicks();
 dt = now - lastTime;
 if (dt >= minFrameTime)
 {
 drawWelcome(dt);
 lastTime = now;
 }
 break;
 }
 break;
case SDL_MOUSEBUTTONDOWN:
 initBounce();
 currentPage = bounce;
 break;
}

When this code sees a timer event, it checks how long it has been since it last
updated the screen and calls drawWelcome() to animate the screen. When it
sees that a mouse button has been pressed, it switches to the game page by

calling initBounce() to get it ready and then sets currentPage to point to the
game page. The next time through, the main loop bounce() will be called.

Animation

The animation routine uses the dirty pixels technique so only a small portion of
the screen is redrawn for each frame. With this technique, we keep track of the
last position in which an object was drawn and the new position. When Bounce
draws the Earth, first it erases the dirty pixels where it was by filling them with
the background color, and then it draws the Earth in its new location. We fill
rectangles and draw images using:

SDL_FillRect(screen, rectangle, color);
SDL_BlitSurface(image, NULL, screen, rectangle);

SDL_FillRect() fills a rectangle in an SDL_Surface, like the screen, with a color.
The rectangle is specified using an SDL_Rect structure, and the color is created
using SDL_MapRGB(). SDL_BlitSurface() copies a rectangle from one surface into
a rectangle in another surface. If the source rectangle is NULL then the whole
surface is copied. SDL_BlitSurface() is the routine that applies the color key and
takes advantage of RLE encoding.

Summary

SDL reduces the time it takes to write games on Linux. It is small enough that
learning it is a project, not a career, and it is powerful enough for commercial
applications. I hope that between the information in this article and the source
code for Bounce, you have learned enough of SDL to start modifying Bounce
and building your own SDL games.

Resources

email: bob@pendleton.com

Bob Pendleton's first programming assignment was to port games from an HP
minicomputer to a UNIVAC mainframe, and he has been fascinated by
computer games ever since. He has been working with various versions of UNIX
and Linux since 1981. He is an independent software developer and writer. You
can reach him at Bob@Pendleton.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/110/6410s1.html
mailto:bob@pendleton.com
mailto:Bob@Pendleton.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Embedding an SQL Database with SQLite

Michael Owens

Issue #110, June 2003

If you want the convenience of SQL without the size and setup hassles of a
database server, embed SQLite right in your program, whatever your favorite
language.

SQLite is a powerful, embedded relational database management system in a
compact C library, developed by D. Richard Hipp. It offers support for a large
subset of SQL92, multiple tables and indexes, transactions, views, triggers and a
vast array of client interfaces and drivers. The library is self-contained and
implemented in less than 25,000 lines of ANSI C, which is free to use for any
purpose. It is fast, efficient and scalable, and it runs on a wide variety of
platforms and hardware architectures ranging from ARM/Linux to SPARC/
Solaris. Furthermore, its database format is binary-compatible between
machines with different byte orders and scales up to 2 terabytes (241 bytes) in
size.

Hipp conceived of the idea of SQLite while working with a team from General
Dynamics on a program for the US Navy for use onboard the DDG class of
destroyers. The program ran on HP-UX and used an Informix database. As they
began the project, they quickly found that Informix can be rather difficult to
work with. It runs fine once you get it going, but it can take a full day for an
experienced DBA to install or upgrade.

At the time, the team was using Linux and PostgreSQL for development work.
PostgreSQL required considerably less administration, but they still wanted to
be able to produce a standalone program that would run anywhere, regardless
of what other software was installed on the host platform. In January 2000,
Hipp and a colleague discussed the idea of writing a simple embedded SQL
database engine that would use GDBM as its back end, one that would require
no installation or administrative support whatsoever. Later, during a funding
hiatus, Hipp started writing it on his own, and SQLite version 1.0 soon came to
life.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

General Dynamics started using SQLite in place of PostgreSQL right away.
SQLite allowed them to generate a standalone executable that could be
installed quickly and easily on wearable computers and laptops for display at
tradeshows and sales meetings. Informix still is being used for shipboard
operation; however, the Naval office in charge of ongoing maintenance of the
program recently has been e-mailing Hipp for help in compiling SQLite on an
HP 9000. So, things may be changing.

Major changes came about with version 2.0. Version 1 used GDBM for storage,
which uses unordered keys (aka hashing). This limited what SQLite could do.
Furthermore, GDBM is released under the GPL, which discouraged some from
trying it. In January 2001, Hipp began working on his own B*Tree-based back
end to replace GDBM. The new B*Tree subsystem stores records in key order,
which permits optimizations such as logarithmic time MIN() and MAX()
functions and indexed queries with inequality constraints. It also supports
transactions. The end result was a much more capable database. Version 2.0
was released into the public domain in September 2001.

SQLite started to take off with version 2.0. Dozens of people began writing in to
tell how they were using it in commercial and free products. A few even
contracted Hipp for technical support or custom modifications. According to
Hipp, at least one widely used program for Windows incorporates a modified
version of SQLite in recent releases. SQLite also is being used at Duke Energy
and in other branches of the US military, besides the Navy project that
originally inspired it.

Since its public release a year and a half ago, SQLite has been gaining features
and users at a speedy clip. A quick look at the SQLite Wiki reveals many more
applications whose developers have discovered SQLite and put it to use in their
software. It even has its own Apache module (mod_auth_sqlite), which seems to
be a sign of success in its own right. As the creators of PySQLite, a Python
extension for SQLite, Gerhard Häring and I have been surprised to see more
than 3,000 downloads in less than a year. Currently, SQLite is the highest-rated
database engine on <@url>freshmeat.net.

Architecture

SQLite has an elegant, modular design. It can be divided into eight primary
subsystems (Figure 1), some of which take rather interesting approaches to
relational database management.

Figure 1. SQLite Architecture

At the top of the diagram is the parser and tokenizer. SQLite includes its own
highly optimized parser generator, called the Lemon parser, which produces
fast, efficient code, and by virtue of its novel design, it is especially resistant to
memory leaks. At the bottom is an optimized B-Tree implementation, based on
Knuth, which runs on top of an adjustable page cache, helping to minimize disk
seeks. The page cache, in turn, operates on an OS abstraction layer that helps
make the library more portable.

At the library's core is the virtual database engine. The VDBE performs all
operations related to data manipulation and is the broker through which
information is passed between client and storage. In many ways, it is the heart
of SQLite. The VDBE comes into play after the SQL is parsed. The code
generator takes the parse tree and translates it into a mini-program, which is
made up of a series of instructions expressed in the VDBE's virtual machine
language. One by one, the VDBE executes each instruction, which ends by
fulfilling whatever request was specified in the SQL statement.

The VDBE's machine language consists of 128 opcodes, all centered around
database management. There are opcodes for opening tables, searching
indexes, storing and deleting records and many other database operations.

Each instruction in the VDBE consists of an opcode and up to three operands.
Some instructions use all three operands; others use none. It all depends on
the nature of the instruction. For example, the Open instruction, which opens a
cursor on a table, uses all three operands. The first operand (P1) contains the
ID by which the cursor will be identified. The second operand (P2) refers to the
location of the root (or first) page of the table, and the third operand is the
table's name. The Rollback instruction, on the other hand, requires no
operands at all. The only thing the VDBE needs to know in order to perform a
rollback is whether or not to do one.

For any given SQL statement, you can view the generated VDBE program using
the explain command in the SQLite shell. Listing 1 shows a simple example.

Listing 1. explain Results for a Simple Query

explain is not only useful for gaining better insight into the workings of the
VDBE but also for practical matters like query optimization. The VDBE is really a
subject in itself. Fortunately, for those who are interested, it is well
documented, and its theory of operation along with its opcodes are covered in
great detail on the SQLite web site.

With respect to physical storage, each database is stored in a single file. That is,
all database objects that comprise an individual database (views, triggers,
indexes, tables, schema and so on) reside together in one file that defines an
SQLite database. Database files are made up of uniformly sized pages. Page
size is set upon database creation, and valid sizes range from 512b-4Gb. By
default, SQLite uses a 1Kb page size, which seems to offer the best overall
performance.

Transactions are implemented using a second file called the journal, which only
exists when there is one or more active connections to the database. Each
database has exactly one journal file. It holds the original (unmodified) pages
that were changed in the course of a transaction. When the transaction
commits, the journal pages are no longer needed and are summarily discarded.
Rollbacks are performed by restoring pages from the journal file to the
database file. The use of the journal file ensures that the database always can
survive a crash and be restored to a consistent state. The first client to connect
to a database after a crash triggers a rollback of the previous transaction.
Specifically, when the client connects, SQLite tries to create a new journal file,
only to find that a previous one exists. When this happens, it infers a crash
must have occurred and proceeds to copy the contents of the old journal file
back into the database, effectively restoring it to its original state before the
crash. Then it gives the client the go-ahead to start working.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l1.html

Simple API, Many Languages

SQLite has an extremely easy-to-use API that requires only three functions with
which to execute SQL and retrieve data. It is extensible, allowing the
programmer to define custom functions and aggregates in the form of C
callbacks. The C API is the foundation for the scripting interfaces, one of which
(the Tcl interface) comes included in the distribution. The Open Source
community has developed a large number of other client interfaces, adapters
and drivers that make it possible to use SQLite in other languages and libraries.

Using the C API requires only three steps. Basically, you call sqlite_open() to
connect to a database, in which you provide the filename and access mode.
Then, you implement a callback function, which SQLite calls for each record it
retrieves from the database. Next, call sqlite_exec(), providing a string
containing the SQL you want to execute and a pointer to your callback function.
Besides checking for error codes, that's it. A basic example is illustrated in
Listing 2.

Listing 2. Basic C API Example

One of the nice things about this model that differs from other database client
libraries is the callback function. Unlike the other client APIs where you wait for
the result set, SQLite places you right in the middle of the result-gathering
process, in the thick of things as they happen. Therefore, you play a more active
role in fetching data and directly influence the retrieval process. You can
aggregate data as you collect it or abort record retrieval if you want. The point
is, because the database is embedded, your application is essentially as much
the server as it is the client, and SQLite takes full advantage of this through the
use of its callback interface.

In addition to the standard C API, an extended API makes it even easier to fetch
records, using sqlite_get_table(), which does not require a callback function.
This function behaves more like traditional client libraries, taking SQL and
returning a rowset. Some of the features of the extended API are functions to
extend SQL by adding your own functions and aggregates, which is addressed
later in this article.

Finally, if for some reason you need an ODBC interface, I am pleased to inform
you that one is available, written by Christian Werner. His ODBC driver can be
found at www.ch-werner.de/sqliteodbc.

Auto-increment Columns

While SQLite does not support sequences per se, it does have an auto-
increment key and the equivalent of MySQL is mysql_insert_id(). A primary key

https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l2.html
http://www.ch-werner.de/sqliteodbc

can be set to auto-increment by declaring it INTEGER PRIMARY KEY. The value
of the last inserted record for that field is obtained by calling
sqlite_last_insert_rowid().

BLOBs

You can store binary data in SQLite columns with the restriction that it only
stores up to the first NULL character. In order to store binary data, you must
first encode it. One possibility is URL-style encoding; another is base64. If you
have no particular preference, SQLite makes life easy for you through two
utility functions: sqlite_encode_binary() and sqlite_decode_binary().

Thread Safety

SQLite is as threadsafe as you are. The answer more or less centers around the
SQLite connection handle returned by sqlite_open(). This is what should not be
shared between execution contexts; each thread should get its own. If you still
want threads to share it, protect it with a mutex. Likewise, connection handles
should not be shared across UNIX fork() calls. This is more common sense than
anything else. Bottom line: thread or process, get your own connection handle,
and everything should be fine.

SQLite uses the concept of a pragma to control runtime behavior. Pragmas are
parameters that are set using SQL syntax. There are pragmas for performance
tuning, such as setting the cache size and whether to use synchronous writes.
There are some for debugging, like tracing the parser and the VDBE, and others
still are for controlling the amount of information passed to client callback
functions. Some pragmas have options to control their scope, having one
variant that lasts only as long the current session and another that takes effect
permanently.

SQLite sorts a column lexigraphically if, and only if, that column is declared as
type BLOB, CHAR, CLOB or TEXT. Otherwise, it sorts numerically. SQLite used to
make decisions on how to sort a column solely by its value. If it “looked” like a
number, then it was sorted numerically, otherwise lexigraphically. A
tremendous amount of discussion about this appeared on the mailing list, and
it eventually was refined to the rules it uses today, which allow you to control
the method of comparison by the declared type in the schema.

Scripting Interfaces

As mentioned earlier, many client interfaces have been developed for SQLite.
To give you a taste, a Python version of the previous C example is illustrated in
Listing 3, and its Perl counterpart is shown in Listing 4. It doesn't get any easier.
SQLite also can be used from the shell, which makes it amenable to system

administration tasks. A shell version of our stock example is provided in Listing
5.

Listing 3. Python Example

Listing 4. Perl Example

Listing 5. Shell Example

Finally, because I am not a Java, Tcl, Ruby, Delphi, Lua, Objective C, PHP, Visual
Basic, .NET, Mono, DBExpress, wxWindows, Euphoria or REXX programmer, I
will have to refer the likes of you who are, to the SQLite Wiki to find your
respective interfaces. See cvs.hwaci.com:2080/sqlite/wiki?p=SqliteWrappers for
your preferred way to talk to SQLite.

Extending SQLite

SQLite includes a nice C framework in which to create your own functions and
aggregates that can be called from SQL. Some wrappers, such as the Python
wrapper, allow you to use this feature to implement them in the extension's
language. SQL, such as INSERT INTO orders purchase_date values

CURRENT_TIME(), is a simple matter of writing a callback function that looks
something like Listing 6. Then, register the function and use it as shown in
Listing 7.

Listing 6. Implementation of CURRENT_TIME()

Listing 7. Using CURRENT_TIME()

All of SQLite's built-in functions, such as avg(), min(), max() and sum(), with the
exception of the magical typeof(), are implemented using this API. User-defined
aggregates can be added just as easily. Doing something like SELECT

variance(age) from population uses a very similar approach to creating
functions. This, however, is left as an exercise for the reader. Hint: the file
func.c includes some excellent examples. Like functions, SQLite uses the API to
implement its aggregates as well.

Administration

For administration, SQLite offers an intuitive utility program conveniently
named sqlite with which users of MySQL and PostgreSQL will feel perfectly at
home. It has both shell and command-line modes. Within the shell, you can
view a database's tables, schema and indexes, as well as execute SQL on the
command line and in external files. It also has some nice modes for viewing
data and VDBE output.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l5.html
http://cvs.hwaci.com:2080/sqlite/wiki?p=SqliteWrappers
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6650l7.html

Though loading and unloading data can be done within the shell, it is even
easier on the command line. Given a file containing valid DDL/DML (call it
dump.sql), you can load it into a database (call it db), like so:

sqlite db < dump.sql

This creates the database db if it doesn't exit. The reverse process to dump a
database would be:

sqlite db .dump > dump.sql

SQLite is powerful. Its wide application, ease of use, portability, speed,
scalability, small footprint and clean code base make it a library that all
programmers should have in their arsenals. And given its license, there is
simply no reason not to. The SQLite Project is always looking for new users and
developers, and it welcomes new ideas and engaging discussion. I hope you
enjoy learning about and using it as much as I have.

Resources

Michael Owens (mike@mikesclutter.com) is a chemical engineer turned
programmer. He works for a real estate firm in Dallas/Fort Worth, Texas using
Linux and open source to develop in-house software. He is the creator and
codeveloper of PySQLite.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6650s1.html
mailto:mike@mikesclutter.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Template-Based Approach to XML Parsing in C++

John Dubchak

Issue #110, June 2003

Using the Xerces library and a little C++ code, you can parse an XML file to get
only the information you need as easy-to-handle objects.

XML is a markup-based data description language designed to allow developers
to create structured documents using descriptive custom tags. The intent of
XML is to separate the description of the data from its intended use and allow
the transfer of the data between different applications in a nonplatform- or
architecture-specific way. Another useful application of XML is to describe a
process in a logical and meaningful manner that can be carried out by the
application at runtime.

Parsing XML

In order for an XML file to be parsed successfully, the developer must first
create a file that can be processed by a parser. A parser is a set of shared
objects or a library that reads and processes an XML file.

The parser may be one of two types: validating or nonvalidating. A validating
parser scans the XML file and determines if the document is well formed, as
specified, by either an XML schema or the document type definition (DTD). A
nonvalidating parser simply reads the file and ignores the format and layout as
specified by either the XML schema or the DTD.

The most widely used parsers represent two different approaches: event-driven
and tree-based. The event-driven parser is called SAX (simple API for XML
processing). A tree-based parser creates a DOM (document object model) tree
in memory at the time the XML file is read and parsed.

The DOM implementation is difficult to navigate and does not allow for clean
mapping between XML elements and domain-specific objects. SAX provides the
events to allow developers to create their domain-specific objects at the time

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the XML file is read and parsed. This article delivers a framework design using
the SAX API for XML parsing.

XML Parsers for C++

The two most commonly used parsers for C++ are the open-source Xerces of
the Apache Project and XML4C created by IBM's alphaWorks Project. XML4C is
based on Xerces.

Both parsers essentially provide the same layout of source and libraries and
therefore can be used interchangeably. They also support both DOM- and SAX-
based XML parsing.

This document describes an implementation using the SAX parser with the
Xerces parser. The Xerces source or binaries related to XML parsing can be
downloaded from the Xerces web site (see Resources).

Parsing XML Files Using SAX

In order to begin parsing an XML file using the SAX API, the layout of the SAX C+
+ object interactions must be understood. SAX is designed with two basic
interfaces:

SAXParser

setDoValidationsetDoNamespacesetDoSchemasetValidationFullSchemaCheckingsetDocumentHandlersetErrorHand

and

HandlerBase

warningerrorfatalErrorstartElementcharactersignorableWhitespaceendElement

Close examination of the methods in the HandlerBase object reveals two
different categories of methods: error handling and document processing. The
error-handling methods include warning, error and fatalError, whereas the
parsing methods consist of startElement, characters, ignorableWhitespace and
endElement. These behaviors can be separated into individual objects, as
shown later.

The SAXParser class takes care of setting basic properties and the desired
behavior to be enforced at runtime.

The following sample code illustrates the basic steps for parsing an XML file
using the SAX parser in C++:

// Create a new instance of the SAX parser
SAXParser parser;
// Initialize the behavior you desire
parser.setDoValidation(true);
parser.setDoNamespaces(true);
parser.setDoSchema(true);
parser.setValidationSchemaFullChecking(true);
// Add handlers for document and error processing
parser.setDocumentHandler(&docHandler);
parser.setErrorHandler(&errorHandler);
// Parse file
parser.parse("MyXMLFile.xml");

At the time the parsing occurs, the classes you've instantiated, docHandler and
errorHandler, are forwarded the events that get triggered from the parsing.
These classes are derived from the Xerces base class HandlerBase and have
overridden the appropriate methods for handling the events based on their
categorized function.

Now that we've been exposed to parsing XML using SAX, let's explore how our
XML framework has been implemented to take advantage of the facilities
provided within the API.

Policy Classes

A policy class, as described and made popular by Andrei Alexandrescu's
Modern C++ Design (see Resources), “defines a class interface or a class
template interface. The interface consists of one or all of the following: inner
type definitions, member functions and member variables.”

The usefulness of policy classes, in this XML framework, are realized when
created using a template-based C++ design. A policy allows you to parameterize
and configure functionality at a fine granularity. In this design, policies are
created to accommodate the following behaviors: document handling, error
handling, domain mapping and parsing.

Configuring these elements as policies allows the creation of more concise
code that is easier to maintain by any developer experienced in C++ and the
use of templates.

The principal class of the XML-parsing framework is the XMLSAXParser. It's a
custom-designed class template that implements the XMLParserInterface and
includes a SAXParser object as a member variable. The template parameters
include policy classes for both the document and error handlers. All parsing is
eventually delegated to the SAXParser member variable after the various
handlers and other properties have been set.

Implementing custom handlers, as policy classes, is a relatively trivial task using
the framework. The advantage of this type of design is that the same
framework can be used with different parsing APIs and different domain-

mapping objects by altering one or more of the policies—an exercise that is not
implemented in this article.

In order to create custom handlers, derive newly created custom classes from
HandlerBase and override the virtual methods of interest. The following two
types of custom handlers have been created in the XMLFactory framework:

XMLSAXHandler

startElementcharacterignorableWhitespaceendElement

and

XMLSAXErrorHandler

warningerrorfatalError

XMLSAXHandler handles document event processing, and XMLSAXErrorHandler
handles the various error callbacks.

Mapping XML Tags to Domain Objects

The next aspect of our XML-parsing framework is converting XML tags into
domain-related objects that can be used within the application by using
templates and a loose definition of policy classes.

The XMLDomainMap template accepts a single template parameter, called an
XMLNode. The interface for the domain-mapping object is as follows:

XMLDomainMap

createaddupdateAttribute

The XMLNode acts as both a leaf and a root in a tree structure that aggregates
its children as a subtree. The XMLNode's interface is:

XMLNode

operator==operator!
=operator=addChildhasChildrennumChildrenvaluenamegetChildCountgetChildgetParent

The key here is the design of the public interface of the object. There are
several operator overloads, specifically operator equals (operator==), operator
not equals (operator!=) and the assignment operator (operator=). The benefit to
this is the object now can be used with many standard template library (STL)

containers and algorithms, which allows for the use of advanced features with
the C++ language.

Linking our Classes Together—An XML Façade

Thus far, the focus has been on individual classes and describing the templates
that have been created for our XML-processing framework. The next step is to
link the disparate interfaces together and make them appear to function as a
single cohesive unit by using the façade design pattern.

The façade design provides a simple and elegant way to delegate parsing
functionality from an outside client to the internal policy class that will be used
for performing the parsing.

In Design Patterns, the authors define the intent as to “Provide a unified
interface to a set of interfaces in a subsystem. Façade defines a higher-level
interface that makes the subsystem easier to use.”

The XMLProcessor is the façade that has been created. It is defined with the
following interface:

XMLProcessor

parsegetParseEngine

Once all the source has been written, an XML file and a test client will be
needed to run our sample.

Parsing an Actual XML File

The following simple XML file, showing the basic layout of a customer record
with a name and account number, has been created to illustrate the simplicity
of using the framework:

<?xml version="1.0"
encoding="iso-8859-1"?>
<customer>
 <name>John Doe</name>
 <account-number>555123</account-number>
</customer>

For now, create this file with a text editor and save it as MyXMLFile.xml.

The Public Interface—Writing the Client Application

The framework's functionality will be used as a mechanism to provide a
succinct interface to the client application.

The primary methods that a client of the framework would make use of can be
described with an actual, albeit small, sample of C++ source code:

// ---------------------------------------
// Sample source for parsing an XML doc
// ---------------------------------------
#include "XMLProcessor.hpp"
#include "XMLDomainMap.hpp"
#include "XMLSAXParser.hpp"
#include "XMLNode.hpp"
#include "XMLCommand.h"
#include "XMLSAXHandler.hpp"
#include "XMLSAXErrorHandler.hpp"
#include <iostream>
using namespace std;
using namespace XML;
// Let's get the ugly stuff out of the way first
typedef XMLSAXHandler<XMLDomainMap<XMLNode> >
 DOCHANDLER;
typedef XMLSAXErrorHandler ERRORHANDLER;
typedef XMLSAXParser<DOCHANDLER, ERRORHANDLER>
 PARSER;
typedef XMLProcessor<PARSER> XMLEngine;
// Create a basic test client
int main(void)
{
 // Define a string object with our filename
 std::string xmlFile = "MyXMLFile.xml";
 // Create an instance of our XMLFactory
 XMLEngine parser(xmlFile);
 // Turn off validation
 parser.doValidation(false);

 // Parse our XML file
 parser.parse();
 // Get the tree root
 XMLNode root = parser.getXMLRoot();
 // Print the name of our object
 cout << "Root = " << root.name() <<
endl;
 return 0;
}

Now that an instance of an XMLNode object representing the root of the tree
has been parsed, the child elements of the root XMLNode can be accessed.

Compiling the Test Client

The last step is to compile the client. Simply perform the compile at the
command line:

g++ -o testClient -I. -I/path/to/xerces/include \
-I/path/to/xerces/include/xerces testClient.cpp \
-L/path/to/xerces/lib -lxerces-c

This compiles the client application. The next step is to run a test. Be sure to set
your LD_LIBRARY_PATH environment variable to point to the location of your
Xerces installation's lib directory. Because the shared libraries are from this
directory, the application loader needs a way to import the required symbols at
runtime in order for everything to function correctly.

When testClient is run, the following output is expected:

$>testClient
Adding child name
Adding child account-number
Root = customer

You now have a fully functional XML-parsing framework using C++ templates
that will allow you to incorporate XML into your new or existing applications.
Sample code is available at ftp.linuxjournal.com/pub/lj/listings/
issue110/6655l1.tgz.

Resources

email: jdubchak@qwest.net

John Dubchak is a senior software developer working as a consultant in the St.
Louis area. He's been programming in C++ for the past 12 years and can't
believe how bad his first lines of C++ actually were. His wife says that his hobby
is “sitting at the computer writing little programs”.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/110/6655l1.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/110/6655l1.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/110/6655s1.html
mailto:jdubchak@qwest.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Speeding Up the Scientific Process

Sam Clanton

Issue #110, June 2003

Learn how to optimize your Matlab project by converting parts to C.

As a research staff member at NASA Ames Research Center at Moffett Field, in
the heart of Silicon Valley, California, I was a part of a team that used Linux for
some interesting and advanced research. I worked in the Neuro Engineering
Lab at Ames in support of the construction of a brain-computer interface, a
system by which EEG (electroencephalogram—brain wave) signals can be used
to control electronic systems and robotic devices. My job was to take ideas and
prototype code from primary lab researchers and develop and evaluate
efficient implementations of them for use in real-time data processing with
human subjects. Often, I would be handed only a rough sketch of an algorithm
or a fragment of code to see if it could be used on the brain wave data we had
been collecting.

Matlab and the free software GNU Octave were great tools for doing this work;
they allowed me to develop effective methods for data processing and data
visualization that would have been a real pain to construct in C or, heaven
forbid, Fortran. Ease of implementation is a great concern when dealing with
large amounts of experimental code that may or may not end up as a finished
product.

When a process did indeed fit the bill, and it was time to start thinking about
using it in our real-time data processing system, it would become immediately
apparent that the advantages of Matlab in programming ease did not come
without cost. The cost was speed. The time to process data representing a
single second, for instance, could take minutes or even hours. Obviously, this
would not do in a real-time system. Also, any code deemed worthy would have
to end up in C or C++ to fit into our existing code base. To address both of
these issues, we rewrote much of our Matlab code in C.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Now, if you have some experience with Matlab, you might think, “but Matlab
already exports to C on its own” or, “what about the new Matlab JIT compiler?”
Although the new JIT compiler may speed up code in places (looking at the
documentation, there are many exceptions to what it will try to optimize), it
cannot equal the efficiency of well-written, compiled C code. As for the C export
feature of Matlab, the code exported by Matlab is as slow as the interpreted
code running inside the Matlab environment and is fairly difficult to merge into
existing projects without a bit of interface work. And, none of this helps users of
GNU Octave or those that can't keep up with expensive Matlab upgrades. In
general, it seems the best way to work something originally developed in
Matlab into fast, production-level code, is to do it by hand.

This article first offers a few tips on how to write somewhat more efficient
Matlab code. Then it illustrates the process of integrating C code into a Matlab
program using MEX functions, in order to speed up program execution while
still tweaking and evaluating it in the Matlab environment. From there, it is a
relatively short step to bring the entire project into C or C++. Most of the
information here is available in different places on-line; this article is presented
as a sort of a HOWTO or a personal account of bringing a piece of Matlab
experimental code into the real world.

For this article, I use as an example a piece of code developed to isolate rapid
changes of voltage measured on the surface of the head. The code uses an
algorithm called multicomponent event-related potential estimation, or simply
mcERP. I first looked into porting Matlab code to C when working on this
algorithm. When testing the algorithm with different configuration parameters
and input data sets, I usually would have to let it run overnight. No amount of
optimization inside Matlab was able to drastically cut down its execution time.

After full conversion to C, it usually would take on the order of tens of seconds
to execute with a large input data set. I view this as an extreme time savings,
due to the highly nested, looping nature of the algorithm (see Listing 1). I would
not expect most algorithms to speed up this much. Even so, this performance
still is not quite good enough for real-time operation, but it is close enough that
we could start to look at data reduction techniques, parallelizing the code and
other tricks to pare it down to something closer to the speed we need.

Optimizing Code in Matlab

The main area in which the performance of Matlab suffers greatly is looping.
Matlab abhors the loop; it was written to be more efficient to do many loop-
type operations by vectorizing the code, applying functions over a range of data
in a matrix, than it is to iterate through the data. Unfortunately, this only works
with certain kinds of operations. When dealing with high-dimensional matrices,
this often produces code that is hard to read and understand. Looping happens

to be an area in which C excels—iterating through a matrix using pointer
arithmetic is an extremely efficient and sometimes more understandable way
to do operations over large chunks of data. Most of the effort of C optimization
of Matlab code is spent trying to optimize nested loop structures.

Other ways to code in Matlab more efficiently include:

1. Make sure to allocate all, even moderately sized, arrays using the zeros()
function before assigning values to the array, instead of having Matlab
append data to existing arrays as values are assigned.

2. As mentioned in the Matlab documentation, store all of your code in
functions instead of scripts. This offers about a two- to threefold speed
increase.

3. Organize data such that operations over a range of a matrix operate in a
column-major fashion. Matlab stores arrays like Fortran does, in that data
in a particular matrix column is contiguous in memory. This is unlike C,
where data in a matrix row are contiguous in memory. If you are going to
apply functions over a range of data, store that data in a column rather
than along a row in the matrix. This is completely anecdotal and may be
false, but it seems to make sense.

4. Try to avoid internal-type conversions that happen over and over. This is
another one where I don't have hard proof, but as Matlab usually does
not make you explicitly label the data types of variables, it is sometimes
easy to have a loop of repeated implicit type conversions. It is better to
convert to a common data type first, then do your repeated operations.
This is like programming in C or C++ but harder to detect right away,
because variables are almost never explicitly typed in Matlab.

That being out of the way, let's take a look at a code snippet from the mcERP
algorithm (Listing 1). This represents one of the many nested loop structures
within the code. The mcERP algorithm relies on a complicated process of
iterative Bayesian waveform estimation. A number of the following loopy bits
are in the code, all of which are run repeatedly to hone in on waveform shapes
present at the data.

Listing 1. Nested Loops in the mcERP Algorithm

One can see how this sort of structure would not run so quickly with an
interpreter that does not perform well with loops. However, because of the
inner if statement, the code cannot be vectorized without adding an inner
function call—which can't be any better. This code, then, is a prime candidate
for translation to C/C++. However, it is nice to have a foot in Matlab when
developing the algorithm, because it is easy to produce pretty pictures like
those in Figure 1. So, we write something called a MEX function. That way, we

https://secure2.linuxjournal.com/ljarchive/LJ/110/6722l1.html

can have the core fast bits run quickly while retaining interface points around
those parts in Matlab that tune and inspect the overall algorithm.

Figure 1.

Figure 1 is an example output from the mcERP algorithm, showing estimates of
the fundamental waveforms driving real-time potential readouts at scalp
electrodes during simulated experimental trials. Each of these waveshapes is
the result of many iterations of progressively accurate Bayesian waveshape
estimation, requiring many calculations per iteration. These results can take
many hours to achieve with Matlab but take seconds or minutes if portions of
the algorithm are rewritten in C.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f2.large.jpg

Figure 2.

The photograph in Figure 2 shows our experimental setup for conducting
experiments in brain-computer interface with real-time feedback. With the
three large displays, we have complete control over what the subject sees
within most of his or her field of view. All of the number crunching and display
software was developed in-house and runs on Linux.

Setting Up the C Environment for Matlab

A fair amount of documentation is available on the MathWorks web site (see
Resources), and you should take a look at it after reading this article if you are
serious about developing MEX functions. This article emphasizes optimization
and some of the sticking points of getting things working.

To develop MEX functions in Linux, go to the source of all that is good, the
command line, and type mex -start. When that doesn't work, search for the
MEX script within the Matlab install directory. Your system administrator may
have made a link in your path only to the Matlab binary. Running MEX, you are
presented with a choice of compiler. To take advantage of some compiler
optimizations that I will detail later, it is a good idea to use GCC rather than the
Matlab built-in LCC. MEX will create the file ~/.matlab/R12/mexopts.sh, which is
sourced when you compile external code for Matlab using the MEX utility. It is
useful and instructive to take a look at the mexopts.sh file, under the
appropriate section for your platform/compiler. In the case of x86 Linux/GCC,
look at the glnx86 section of the main switch statement. Any changes made
outside this section do not have any effect when compiling code. Place any

https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722f2.large.jpg

compiler switches there with which you wish to compile your C functions. For
the purpose of optimization, you might want to try:

COPTIMFLAGS='-O3 -funroll-loops
-finline-functions'

(this is aggressive—be careful) or whatever flags you desire. To use these flags
in compilation, you later must run MEX with the -O option. As with some
makefiles, include here any header directories you wish to include by
appending:

-I/path/to/header/directory

to the end of CFLAGS. Indicate libraries you wish to link with by adding:
-l[libname]

and:
-L/path/to/library/directory

to the end of LDFLAGS.

Once this is done, set up a directory to hold your C files to be compiled with
MEX. I suggest not working on C-based and Matlab-based code within the same
directory. Now, add that directory, or a third build directory that you have
created, to the path within the Matlab environment. Now you are ready to think
about writing code.

How to Code in C for Matlab

First and foremost, think about what your goals are for optimization and what
parts of your program will benefit the most by being rewritten in C. Since the
prime area in which C is much faster than Matlab is the evaluation of loops, it
makes sense to look for loops over a lot of data in your code. It is not worth it
to code for something that loops three times, but if you are iterating over each
voxel in a 500 × 500 × 500 volume, coding in C can shave off tons of time.
Especially look for simple operations in nested loops, like the code fragment in
Listing 1. Anything that performs a complex operation in a nested loop—
anything that looks hard to implement yourself or that you cannot find a third-
party library for—is probably not a good starting point for optimization. It is
possible to call Matlab functions from within your C code, but this won't help
your execution time, for obvious reasons.

Now, the general method of creating C MEX files is to functionize a block of
code in your algorithm or to choose a function you have already written to
optimize. Now, it is time to create the C version of the function. The general
procedure is to create a generic Matlab interface function and then a meat

function representing the actual procedure for which you are coding. See
Listing 2 for an example of a MEX function. The meat function it calls
corresponds to the Matlab file in Listing 1, and parts are available on the Linux
Journal FTP site [ftp.linuxjournal.com/pub/lj/listings/issue110/6722.tgz].

mexFunction() is a sort of main() of the MEX-file programming world. It is the
actual function called when you call your function in Matlab. The actual name of
the function is defined by the name of your compiled .c files, usually the name
of the first .c file that you pass to MEX for compilation. On the Linux x86
platform, MEX files have the extension .mexglx. When Matlab is run on the
Linux x86 platform, Matlab looks for .mexglx files in the same path and in the
same way as it looks for normal .m files, so .mexglx and .m files are
interchangeable. A good way to switch between Matlab and optimized code is
to change Matlab's search path. I compile c_mLAT.c to c_mLAT.mexglx, and
then I can run the compiled code simply by calling c_mLAT() within the Matlab
environment. It's a fairly slick system.

Listing 2. A MEX Function

Things get a little complicated when trying to pass data back and forth between
Matlab and C. You will notice two double pointers in the argument list of the
mexFunction. *plhs[] refers to the return values of the function (Matlab
functions can have multiple return values), and *prhs[] refers to the input
arguments. The number of input and return arguments also are passed to the
function as nlhs and nrhs. The return matrices of the function must be
allocated within the mexFuntion() using routines such as
mxCreateDoubleMatrix() in order to be passed back correctly to the Matlab
environment. The mx functions create memory in the Matlab environment and
are handled by the Matlab memory manager, so there is no need to worry
about freeing memory created by the mx functions.

Functions beginning with mex are called within the Matlab environment, and
with mexCallMATLAB() it is possible to call arbitrary Matlab functions from
within your code. From the mexFunction(), you then call your meat function
after allocating the output, formatting the input and doing things like argument
checking.

Something quite frustrating for C programmers is not dealt with well in the
Matlab documentation, however, and that is the fact that Matlab stores its data
in column-major format. This can be extremely annoying because you want to
be able to use easy-to-understand pointer arithmetic to iterate over the
multidimensional input matrices. But it is frustrating and bug-causing to figure
out how far to step per iteration and so on. There are three solutions to this, as
I see it.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/110/6722.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/110/6722l2.html

1) Figure out the amount you need to step per iteration manually and think it
out. This seems doable and is probably the best solution, but it leads to huge
headaches with arrays of dimension equal to or greater than three.

2) Reformat the code before entering the MEX function so it is organized
correctly for iterating through the way you want in C. This can be fairly
expensive in Matlab, and many times you want to have a drop-in replacement
for your original version.

3) Do what I do, and create macros or macro-type items to access memory in
Matlab arrays. This is slower than stepping through the arrays and might seem
to be an inelegant solution. In my experience, though, it ends up being easy to
read and plenty fast. For instance, I created a file named pops.h that contains
functions like:

extern inline double num3d(double *start, int rows,
 int cols, int x, int y,
 int z)
{
 return(*(start + rows * cols * z
 + rows * y + x));
}

which returns the value in a 3-D Matlab array given the array, the number of
rows and columns of the array and the xyz location of the data you want to
retrieve. It's a little unwieldy, but not too bad. When the code is optimized, it is
inserted into the code the same as a preprocessor macro. One could use
macros just as well, but I find this method much easier to create and debug. In
the end, the speed improvement for doing the loops in C far outweighs the
relatively small loss from doing array access this way.

Other than that, the creation of MEX files is not difficult. When it comes time to
compile, run the MEX program with the names of the C files you wish to
compile. A list of MEX options also is available at the MathWorks web site. After
running mex X.c Y.c Z.c, you will have a file called X.mexglx that, if it is in your
path, you can call as X() on the Matlab command line.

From here, you can rewrite larger and larger portions of your code in C. When it
is time to do the full C implementation, it often is beneficial to use the C export
feature of Matlab to export the outer Matlab code, because the important parts
also have been optimized by you. If things are still not fast enough, it might be a
good idea to redo the outer function to deal with memory in a C-friendly
fashion. Then you can speed up the loops in the inner-C code, using optimized
pointer iteration to access the array values.

In general, the use of Matlab to prototype and develop code can speed things
up greatly. However, when you find yourself waiting overnight for Matlab to

produce results, only to find that you messed up a small input value, the
process of hand-optimizing pieces of the code can be extremely beneficial to
making your algorithms practical for use.

Resources

email: sclanton@oeic.net

Sam Clanton is currently an MD/PhD student at The University of Pittsburgh/
Carnegie Mellon, maintaining an affiliation with NASA and QSS Corporation at
Ames Research Center in Mountain View, California. He spends his time looking
at problems in biological signal processing, computer vision and medical
robotics, and is most interested in building information systems like nature
does. Sam spends most of his time checking his e-mail (but never writing back)
and drinking too much coffee.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6722s1.html
mailto:sclanton@oeic.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Lighting Simulation with Radiance

Anthony W. Kay

Issue #110, June 2003

Go from a sketch to a rendered scene in a matter of hours.

When I wanted to design a log home on my computer to see what it would look
like under actual lighting conditions, I tried AutoCAD, 3D Studio Max and
numerous off-the-shelf home design packages. None of them provided the
realistic output or easy support for dealing with the log walls I desired. I had
been playing with a lighting simulation package from the Lawrence Berkeley
National Laboratory (LBL) known as Radiance and decided I could get what I
wanted much faster by adding utilities to it.

So What Is Radiance?

Radiance is a physical lighting simulation system written primarily by Greg
Ward Larson. It has been around since the early 1990s and recently changed
licensing from a free-for-noncommercial-use license to the open-source model.
The package produces great-looking images that are output in a special format
that records both the texture and physical lighting of a scene, much like the
professional products LightScape and VIZ 4 by Autodesk.

The packages used for movie and game making are really the graphics
equivalent of junk food factories. The end result may be attractive and popular,
but it isn't substantial. The physical details of lighting simply aren't as important
as speed to movie and game makers, because they have a lot of pixels to push.
A two-hour movie has 172,800 individual frames, and games have to run in real
time. As a result, light becomes an artifact of an artistic algorithm in most
graphics systems and has little basis in reality.

Radiance output is considered a lab-quality simulation of the physics of light (as
long as your input is realistic) and has been rigorously tested in the
professional world.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Installing Radiance

You can obtain the Radiance source code from radsite.lbl.gov. I recommend
getting the source tarball, as the compiled RPMs do not include any of the
auxiliary files. Once you have the tarball:

$ tar xzf rad3R4.tar.gz
$ cd ray
$./makeall install

Then, simply answer the questions about where you want to put the software. I
use $HOME/radiance/bin for the binaries and $HOME/radiance/lib for the
auxiliaries.

The makeall script doesn't install the sample scenes or the documentation, so
you have to move those files to a good spot also. For example:

$ mv doc/man $HOME/radiance
$ mv obj $HOME/radiance

Be sure to add these things to the MANPATH and PATH variables in your
profile. One caveat: there is an important utility called rview in the package.
Unfortunately, Vim also has a utility of the same name, so use a PATH
modification or rename Vim's rview. Do not rename the Radiance utility,
because it is called indirectly by other Radiance utilities.

Radiance Input Basics

New users of Radiance first will notice the lack of an included CAD system for
generating the scene description. The package was written for research
purposes under UNIX in the early 1990s, and if you look at the file formats, it is
obvious they were written for command-line junkies like myself who love the
power of pipes and plain-text processing (my own initials are AWK, after all).

Nevertheless, there are utilities for translating geometry from formats like DXF,
Wavefront and MGF so you can use any utility that will output such a format.
Many of the modelers listed in the application archive of linux.org will output
one of these. A Windows-based AutoCAD/Radiance module called Desktop
Radiance is also available from the Radiance web site if you happen to own a
compatible version of AutoCAD.

The input files of Radiance are human readable, which makes them good
candidates for script generation. However, be warned: occasional terms in the
documentation will cause accelerated heart rates in passing physicists, such as
“watt per square meter per steradian”. Be sure to check out all the
documentation on the web site. If you decide to do more than play, you might

http://radsite.lbl.gov
http://www.linux.org

want to track down a copy of Rendering With Radiance by Greg Ward Larson, et
al. It is currently out of print, so check with used book dealers.

Rolling Your Own—A Sample Scene

Listing 1 is a scene that includes sky and ground, the material for brass and a
sphere with the brass material applied. The sky and ground are standard. The
only thing you need to edit for your own scenes are the options to gensky. The
values in the listing correspond to noon on November 25 at 33° latitude north
and 80° longitude west. Use negative numbers for south and east.

Listing 1. Sample Input Scene for Radiance

Each item in the scene description has the same format. The first line declares
an existing material that will be applied to the entry (or void if that doesn't
apply), a type name for a material or geometric primitive (like sphere, polygon,
plastic or metal) and a user-defined name. The next three groups are the string,
integer and real (floating point) parameters for the entry. Each of these starts
with an argument count, followed by the actual arguments. They can be spread
over as many lines as necessary.

Most entries have only real parameters. This explains the two zeros in the
middle of most of the entries; they have no string or integer parameters. The 5
in the last line of brass indicates five real parameters, and the 4 in the last line
of the sphere indicates four real parameters. The parameters are
straightforward. For example, a sphere needs a center (x, y, z) and a radius.

Materials can be the hardest part of a scene. It is easiest to start by copying
existing materials and modifying them to your needs. Read refman.pdf from
the web site for more details.

The gensky line at the top of Listing 1 is an embedded command-line utility.
Placing an exclamation point at the beginning of a line in a Radiance scene tells
the system to run the line as a shell command and use the output as part of the
scene. Radiance comes with a number of these utilities, and I've found that
writing your own can make scene generation quick and easy.

Moving Stuff Around

Most of the generators put the object at the origin, which isn't likely to be the
spot you wanted. The xform utility addresses this issue. Its syntax is:

xform -t transx transy transz -rx angle\
 -ry
 -s scalefactor optional_scenefile

https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l1.html

xform can transform everything in a file, or you can pipe the output of a
generator utility to it. It can scale the objects (-s factor), rotate around an axis
(-ry angle means rotate around y axis) and translate to new positions (-t x y
z means translate by x y z). You can use the different options multiple times, in
any order. The operations are done in the order that they appear on the
command line. Also, be sure to pay attention to the exact default position used
by a generator. Most of them put a corner at the origin.

Figure 1 shows the effects of xform on a set of cubes generated by genbox. In
this image, the viewer is on the +z axis looking back toward the origin. The red
axis is +x, and green is +y.

Figure 1. Behavior of xform. The axes are color-coded: +x = red, +y = green and +z = blue. The
blue box was not transformed. The red box was rotated, then translated. The green box was
translated, then rotated.

The blue box is the unmodified output of a call to genbox. The red box is the
same genbox with an xform:

!genbox redplastic box1 .5 .5 .5 \
 | xform -rz 45 -t 2 0 0

The green box is:

!genbox greenplastic box2 .5 .5 .5 \
 | xform -t 2 0 0 -rz 45

The materials (like redplastic) were defined right before these calls but are not
shown in the listings. You can see the way the order of parameters affects the
operations and, thus, the output.

More Complex Scenes

I've written a number of generators in Perl that can be used to put together log
cabins and log homes (available electronically). In this article I use genlogwall,
genlog and genroof. All of these output in units of inches, even though they

sometimes take arguments in feet as input for convenience. The materials I use
also are included in the electronic distribution.

The genlog utility generates a capped cylinder, centered along the +x axis
(Figure 2). It requires several parameters:

genlog material name length_ft diam_inches

Figure 2. Unmodified output from genlog. Axes are in RGB/xyz order (R = +x, G = +y and B =
+z). The x-axis is inside of the log.

The material should be predefined in your scene, and name should be
something you make up. The predefined materials file I supply has three wood
materials, oriented for proper-looking logs: xpine, ypine and zpine. You should
choose the material that matches your eventual alignment for the log.

If you wanted to make a ten-feet tall, eight-inch diameter pole pointed in +z,
with its base at (15ft, 0ft, 0ft), you'd do this:

!genlog zpine mypole 10 8 | xform -ry 90 -t 180 0 0

Remember to use the correct units for xform: 180 inches is 15 feet.

The utility genlogwall takes the following form:

genlogwall material name length_ft height_ft \
 logdiam_inches [hole_data_file]

The optional parameter is a data file that indicates what holes should be in the
wall and what should be in each hole, such as a window or door. At this point, it
will help if we work from the floor plan in Figure 3.

Figure 3. A floor plan for a cabin. Measurements for the holes are taken from the endpoints
of the wall in which they appear.

There are four walls, each 15 feet long. I chose the southwest corner of the
cabin to be (0,0,0), increasing x to the east, increasing y to the north and
increasing z up. This orientation faces the building south, according to the
standard-generated sky from gensky. genlogwall always places the generated
wall at (0,0,0) along the x axis, as shown in Figure 4.

Figure 4. Nontransformed wall output from genlogwall. The axes' colors are in RGB/xyz order.

The hole data file is simple. One hole description per line:

holebottom_ft holetop_ft holestart_ft
width_ft[:w|d]

The first two numbers are measured from the floor and the latter two from the
beginning edge of the wall (x = 0, x increasing). The optional tag on the end
indicates that you want the wall generator to fill the hole with a window or
door. Our floor plan calls for two such hole description files (see Listings 2 and
3). You can use the same data file for multiple walls, but only if you want them
to have the same set of holes.

Listing 2. Hole Description File (holes/southwall.holes) for the South Wall

https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l2.html

Listing 3. Hole Description File (holes/eastwall.holes) for the East Wall

The final touch to our cabin is the roof. Generic roof generation is tricky, so the
genroof tool makes you do a bit more work than the others.

genroof generates planar pieces of roof; use it multiple times with xform to
generate a whole roof.

A data file is required for genroof. In the data file, provide the x-y coordinates
(in feet) of the vertexes of the piece of roof, as read from the floor plan in
counterclockwise order around the edge. The vertexes all must be in the
positive quadrant, and any edge of the peak must run parallel to the x axis.

To figure out the points from the plan, rotate it so the peak of the roof runs left
to right. Now ignore the bottom half of the roof, and think of the lower-left
corner of the top half as your new origin. Your points are then (0,0), (21,0), (21,
10.5) and back to (0,0). Not too bad.

The points should be entered one per line, separated with a space, ending with
the letter b, mp or p to indicate whether the point is at the bottom, somewhere
in the middle or the peak of the roof section. This is necessary because it is
possible to generate odd-shaped roof sections for unusual roofs.

You also need coordinates for the end cap if you want the genroof utility to fill
in the ends of the roof with logs. Looking at the floor plan in our roof
orientation, you easily can see that the caps should be along the walls at
(3,0)®(3,7.5) and (18,0)®(18,7.5). Add this information to the end of the roof
data file prefixed with the marker c:. The completed roof data file for the cabin
is shown in Listing 4.

Listing 4. The Data for Our Roof Generator (roofdata)

The command-line call for genroof is:

genroof -o overhang_ft typename name \
 roofdatafile height_ft thickness_in

The overhang parameter allows the utility to adjust the position of the piece so
you can transform it to the height of the wall without worrying about meeting
the slope of the roof. The completed cabin scene in Listing 5 shows the z
transform for the roof pieces matches the height of the walls, even though the
overhangs will droop below the top of the walls.

Our roof is symmetrical, so we use the same genroof with a different xform to
make the other half. That's easy.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l4.html

Listing 5. The Scene File for a Complete Cabin

Viewing a Scene

Radiance comes with a utility called rad that works like UNIX make. The input
file to rad has a series of variables that tell it how you want to render a scene,
and it figures out how to call the many other programs used to simulate the
light. A commented sample is shown in Listing 6.

Listing 6. cabin.rif: an Input File Telling the rad Utility What Options and Files
Are Used to Generate Pictures

Most of the variables that take filenames can be defined as many times as
there are files that apply. The view variable also can be defined many times.
Each view definition causes the generation of a picture. You should include a
name for the view, where you want to put your eyeball (-vp viewpoint), what
direction you want to look (-vd view direction vector) and which way is
up (-vu view up vector). I also like the -vt option for generating angular
(fish-eye) views.

Using the H value with the various quality settings can take a long time (more
than ten hours on 2GHz machines). Most times, the H setting is overkill, and M
works fine. Use L for interactive rendering. The documentation and a little
experimentation will help you figure out what is best for your scene.

To view a scene interactively, use the command:

$ rad -o x11 cabin.rif

The scene may appear bright and washed out when interactively viewing. Type
e, press Enter, then click on a bright spot in the image to fix the exposure. You
don't have to wait for the render to finish.

You can experiment with the exposure as much as you want. The dynamic
range of Radiance image data far exceeds the dynamic range of your monitor.
This means you can end up with a completely dark or completely white image
that can be adjusted to your display without loss of data. This is drastically
different from normal image files where adjusting the brightness too far can
cause permanent loss of information.

You can load an alternate view from the rif file while interactively rendering
with the L command. For example, if you have a view named interior in your rif
file, typing L interior loads it. You can input a view manually by typing v and
pressing Enter. Simply answer the prompts. Type q and press Enter to quit the
interactive renderer.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6479l6.html

To generate images of all of your views use:

$ rad cabin.rif

Then view the images with:

$ ximage *.pic

You can adjust the exposure of an image in ximage by clicking on the image
and pressing A for auto-exposure, H for human eye response or = to adjust
based on the pixel you clicked.

Figures 5 and 6 show two completed daylight simulations of our cabin.

Figure 5. Perspective view of the cabin in daylight with some trees added for interest.
Rendering at 3300 × 2200 for publishing quality took about five hours on a 1.7GHz laptop.

Figure 6. An angular view of the cabin interior lit only by window daylight. Rendering at 3300 ×
2200 for publishing took about five hours on a 1.7GHz laptop.

You can take light readings averaged over an area from ximage. Simply drag
out a box and press L for luminance or Enter for radiance values. For a quick
physics tutorial of the meaning of these numbers, see www.intl-light.com/
handbook/rad.html. Press Q to quit an image.

http://www.intl-light.com/handbook/rad.html
http://www.intl-light.com/handbook/rad.html

I've covered a very small part of Radiance in this article due to space limitations.
If you want to further populate your scenes with the clutter of daily life, be sure
to check out the links from the Radiance web site for furniture and plants.

email: awkay69@hotmail.com

Anthony W. Kay is a computer programming consultant in Eugene, Oregon.
When he's not simulating trees as building materials he goes hiking among the
live ones.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:awkay69@hotmail.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Science Museums

Len Kaplan

Issue #110, June 2003

Put your knowledge to good use by helping develop innovative, fun and
educational exhibits for a whole new audience.

Over the past several years, my son and I have spent a significant amount of
volunteer time creating exhibit software for the Sciencenter in Ithaca, New
York. This article discusses how this project is similar to other software
development projects, how it is different and how using Linux has been
beneficial. It's not only about Linux or software; it's also about the processes
involved, and what you may encounter if you have the opportunity to work in
this type of environment.

The Target Audience

Science museum exhibit software must be designed with a different audience
from the typical computer program, as the software generally is used in a
different manner. My earlier Microsoft Windows-based exhibits—Measurement
Factory and Fabulous Features—were designed for children up to
approximately sixth grade, while the Linux-based exhibits—Sound Studio and
Traffic Jam—were designed for fifth to eighth graders. The software must be
simple enough that the target audience understands a significant amount of
what they see on the screen and how it relates to the exhibit. A computer in an
exhibit is not necessarily the exhibit; it may act as a guide or simply be another
“manipulative” along with real-world objects.

A second “audience” also must be considered, the museum staff. Floor
personnel (many of whom are volunteers) shouldn't have to be trained in the
vagaries of each computer. Exhibit software and hardware also should come up
and run automatically when the systems are powered on first thing in the
morning, as museums tend to turn off at least some circuit breakers when they
close in the evening. Trust me, you want the museum staff to like your exhibit—

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

if it makes their life difficult, the exhibit may sit there with a sign saying
“broken”.

The Competition

Possibly the most important thing to keep in mind when you're developing your
dream exhibit is this: when you build a non-hidden computer into a museum
exhibit aimed at younger visitors, you're competing with every video game
they've played and every television show or movie they've watched. Your
exhibit, therefore, must be extremely cool.

Measurement Factory is cool because visitors can weigh themselves, measure
their height, test their grip strength, compare themselves to others of their age
and get a certificate when they're done.

Traffic Jam (Figures 1-3) is cool because visitors can play with traffic lights and
prevent traffic jams—or not, if they prefer.

Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f2.large.jpg

Figure 2. Heavy Traffic in

Figure 3. Changing Traffic Light Times in

Sound Studio (Figures 4-6) lets visitors record themselves and their friends on a
multitrack recorder and play with simple special effects, such as echoes.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f4.large.jpg

Figure 4.

Figure 5. Recording Using

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f6.large.jpg

Figure 6. Choosing a Special Effect with

Cool has a definite limit, however. For instance, it's not a good idea to make the
“you made a mistake” annunciator—sound, animation, whatever—too cool;
otherwise visitors will consider that the goal. Don't defeat the purpose of the
exhibit.

The Development Process

An orderly development process is important here because of the educational
goals and target audience. Some of the following actually may be quite
informal, but it is important nonetheless. Your development cycle may not be
exactly like this, of course.

The kickoff meeting: if you're building a standalone exhibit that is not part of a
coordinated exhibition, this may not happen. Tech City, however, was to consist
of around a dozen coordinated exhibits, with a central theme of engineering.
Therefore, an all-day kick-off meeting was held to discuss project goals and to
arrive at an initial focus. I've attended several meetings of this type, and all
were well worth the time. In addition to getting a feel for the project, you'll pick
up a few good ideas and meet people who may be helpful later on in the
process.

Brainstorming: put your feet up and don't even worry about Linux until you
come up with a few good ideas. On the other hand, if you know of a good
existing application that could be modified and made useful, mention it and
make note. While kicking around your cool ideas, keep handy a list of the

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632f6.large.jpg

project requirements. These can range from something quite simple, such as
“demonstrate a type of engineering”, to something more difficult, like
“demonstrate Heisenberg's Uncertainty Principle for elementary schoolchildren
in a nonstructured, graphical manner using virtual manipulatives.” Always keep
the requirements in mind, but I can guarantee that they'll change right up to
the day you ship.

Prototype construction: this phase is the same as building prototypes anywhere
else, but it can be even more fun because of the people you're working with.
The museum people we've worked with over the years have been intelligent,
creative and enthusiastic about their jobs. Don't be too shocked by the
appearance of the kiosk prototype if your exhibit requires one. There's
probably going to be a lot of duct tape and cardboard involved.

First review: this is where you show off your prototype for the first time, for
critiquing. Don't worry if the adults involved in the process don't think your
exhibit is as cool as you know it is. Remember, most adults don't think like kids.
Show your prototype to a few kids in the target age range, informally.

Target test: this might be the most fun part of building your exhibit. It's the first,
and possibly second and third, time that it's set up for museum visitors to try,
so you and possibly other people can observe the results. Expect to go through
this process several times. Important questions to consider include: Is the
exhibit inviting to visitors? How long do visitors stay at the exhibit? Do several
visitors use it together? Do visitors learn what you're trying to teach? Do visitors
use the exhibit the way you intended? Can visitors figure out how to use the
exhibit successfully? Does it appeal to the correct age bracket?

You may be able to interview visitors after they've tried your exhibit, or
museum personnel may do so and report their results to you. This is probably
the most valuable information you'll receive; kids can be brutally honest.

Professional evaluation: there are firms with expertise in evaluating educational
programs such as museum exhibits. If your exhibit is being built as part of a
National Science Foundation (NSF) grant, it likely will be evaluated by one of
them. We've only had the opportunity to deal with one of these firms, Inverness
Research Associates, but found their comments to be extremely helpful. If you
have the chance, observe them at work—you'll learn a lot.

Revision, including code cleanup: like the prototype construction step, this is
similar to what it would be like anywhere else. It's well worth taking the time to
add extra comments and clean up any kludged code. Museum software tends
to accumulate extra bits and pieces. If you need to modify your software
sometime in the future, the extra time spent now may more than pay for itself

later. At this stage, the nice versions of the non-computer parts of your exhibit
are probably being built as well.

Deployment: again, this isn't much different from anywhere else, though you'll
want to keep the turnkey and no-maintenance requirements of this sort of
project in mind. If your software is shipping as part of a larger exhibition,
remember that museum personnel will be extremely busy at this point, so
make things as easy as possible for them. System deployment for Tech City
ultimately consisted of setting up the systems—four targets, plus a spare—
installing Linux on each and testing with the CD-ROMs we'd already prepared
(see the Tips and Tricks section below).

Hardware Selection

Your software may have to run on an old PC that has been sitting around
unused or on a latest-generation machine that has been donated specifically
for the project. Or, if you're lucky—from the Linux driver perspective at least—
you'll get a machine that is one generation old.

If you're able to specify the deliverable hardware, be conservative; try to look at
this from the turnkey system viewpoint, as opposed to office desktop. Well-
debugged hardware and drivers are probably going to be worth more to you
than the latest-and-greatest devices, and saving a few degrees of cabinet
temperature by using a somewhat slower processor and video board might
prevent a failure six months from now in a faraway museum on a warm
summer day. Don't be stingy with system cooling. If you can, specify good-
quality fans, and make sure that whoever builds the exhibit kiosk, if there is
one, provides for adequate airflow to and from the computer.

The Tech City software was deployed on donated Hewlett-Packard Vectra 400s,
each with a 1GHz PIII processor, an i810 chipset with onboard video and a 20GB
HD. We also added an Sound Blaster 16 PCI card to each machine, as Sound
Studio requires either a full-duplex sound card or two cards without that
capability. Each system was supplied with a 19" monitor, also donated by
Hewlett-Packard.

Tool and Library Selection

Not knowing anything about your project, I can't recommend specific tools and
libraries. I won't even try to recommend implementation languages to you. I
can, however, suggest a few guidelines that worked for us.

Experienced developers probably have heard this already, but if an existing
package is close to what you need to accomplish a particular task, think about
modifying and using it. The Traffic Jam user interface is split across four

windows—traffic display, density setting, control and other information. We
used GTK+ because of its extensive theme capabilities and the icewm window
manager for the same reason. We did, however, need to modify the latter
slightly.

Carefully read the licenses for the code you want to borrow, of course. Respect
the author's wishes, and don't create any liabilities for the museum. As with
hardware selection, being conservative is good. If you really don't need the
features available in the latest version of a tool or library, don't rush to install it
—known bugs are easier to work around than unknown ones. Don't forget
about maintenance and project lifetime; either you or someone else may have
to modify this project in the future. A nonrelease version of a language or
library might seem wonderful and stable now, but two years from now it might
be quite different and somewhat incompatible. Even g++ changed in the four
years from when I wrote the prototype Linux version of Traffic Jam until the
final software was delivered.

Lastly, I'll go out on a limb by suggesting that you also be conservative with
regard to selecting a Linux distribution. Latest and greatest may be ideal for
your desktop, but again, reliability is far more important in the field. We chose
Debian 3.0r0 for our final system deployment soon after it was released, but
because Debian has a reputation as a conservative distribution, we felt
comfortable with that decision.

Tips and Tricks

Here are several of the problems we encountered and how we solved them.
The solutions may not be optimal, but they worked well for us.

Problem: How did we set the systems up as turnkey? They must power into the
exhibit software automatically; no user intervention required. Museum staff
also must be able to update software easily, as required.

Solution: We solved this by mounting the CD-ROM application directory over
(on top of) the exhibit home directory, /home/techcity for example, and
automatically logging on as that user at startup. If the appropriate CD-ROM isn't
present—each deployment CD contains the software for only one exhibit—the
console displays a message asking the user to put it in and then reboot.
(Although not accessible to visitors, a keyboard is in the cabinet with each
computer.) The reboot monitor watches a FIFO for either an R to reboot the
system or a Q to quit, though we also considered using it in other ways. See
Listing 1 for pseudo-code describing this process, Listing 2 for our autostart file
and Listing 3 for a sample .xinitrc.

Listing 1. Pseudo-Code for Turnkey Application Startup

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l1.html

Listing 2. File 599xx-mytechcity, Inserted into /etc/rc2.d to Sequence Exhibit
Software Startup

Problem: This type of application generally needs fine-tuning. How did we
accomplish this?

Listing 3. Sound Studio Application .xinitrc File

Solution: Our first idea was to use a configuration file format based on the
Windows .ini file. This would have worked for Sound Studio but not for Traffic
Jam. The latter required, among other things, the defining of multiple vehicle
types, which made XML's ability to represent easily multiple instances of the
same class useful. My son coded a C library designed to run on top of xmllib2,
which allows our software to access the various elements as a tree—based on
the path to that element within the document, in other words.

Listing 4 shows a section of the DTD for the Traffic Jam configuration file, and
Listing 5 contains the associated section of the file. Listing 6 is a section of the
code used to load vehicle physics—notice how Cfg points to a C++ object
wrapped around the library functions mentioned previously.

Listing 4. The Vehicle-Definition Section of the DTD for the Traffic Jam
Configuration File

Listing 5. The Vehicle-Definition Section of the Traffic Jam Configuration File

Listing 6. Loading Vehicle Physics Constants from the XML Configuration File

Problem: How to deal with window manager security? Visitors shouldn't be able
to exit the software, bring up other applications, move windows around and so
on.

Solution: We found that when visitors had access to the keyboard during early
testing, they were quite good at finding their way out of the applications. We
fixed this with a combination of configuration file and code changes to icewm
to disable pop-up menus, window moves and window resizes. Also, neither
exhibit requires the use of a keyboard, so that's kept inside the kiosk during
normal operation.

Conclusion

Educational software may not be your cup of tea, but if it is, try to find a science
museum to help. They like seeing new faces, they can always use the help, and I
can promise that you'll get back more than you give.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6632l6.html

I'd like to thank the staff and volunteers at the Sciencenter, Ithaca, New York,
for running a terrific museum and encouraging people to think outside the box;
check out their web site at www.sciencenter.org.

Credits

Photographs courtesy of the Sciencenter, Ithaca, New York.

email: lkaplan@dreamscape.com

Len Kaplan has been programming since small computers were the size of
refrigerators. In addition to Linux, he's fascinated by embedded systems and
enjoys model railroading in his spare time. Len can be reached at
lkaplan@nlzero.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.sciencenter.org
mailto:lkaplan@dreamscape.com
mailto:lkaplan@nlzero.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Driver Model Core, Part I

Greg Kroah-Hartman

Issue #110, June 2003

The 2.5 kernel implements a unified device driver model that will make driver
development for 2.6 easier.

In the 2.5 Linux kernel development series, a unified device driver model
framework was created by Pat Mochel. This framework consists of a number of
common structures and functions all device driver subsystems have been
converted to use. It also consists of some generic structures that are starting to
be used outside of the driver code by other parts of the kernel. This article
discusses parts of the driver model and provides an example of how to convert
a specific device driver subsystem to the driver model.

Buses, Devices and Classes

The driver framework breaks all things down into buses, devices and classes.
Using these primitives, it controls how drivers are matched up with physical
and virtual devices, and it shows the user how all of these things are
interconnected.

A bus can be described as something with devices connected to it. Examples of
buses are PCI, USB, i2c, PCMCIA and SCSI. Usually only one bus driver controls
the activity on a bus, and it provides a type of bridge from the bus it is on to the
bus it controls.

An example of a bridge is a USB controller that lives on the PCI bus. It talks to
the PCI bus as a PCI device and looks to the kernel as a PCI driver. But it
controls all access to that specific USB bus, talking to the different USB devices
plugged in to it.

Buses are represented in the kernel with the struct bus_type definition, found
in include/linux/device.h. All buses in the system are shown to the user in
subdirectories of the sysfs directory /sys/bus/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Sidebar: Sysfs

Devices are physical or virtual devices that reside on a bus. They are
represented by the struct device definition and are created by the bus when
the bus sees they are present in the system. Usually only one driver controls a
specific device at one time. They can be seen in the /sys/devices directory as a
giant tree of all devices in the system or in the /sys/bus/BUS_TYPE/devices/
directory for a specific type of device.

Devices also have drivers assigned to them that control how to talk to the
device across a specific bus. Some drivers know how to talk to multiple buses,
such as the Tulip network driver, which can talk to PCI and ISA Tulip devices. All
drivers are represented by the struct device_driver definition. They can be seen
in sysfs at /sys/bus/BUS_TYPE/drivers/. Drivers register with a specific bus and
export a list of different types of devices they can support. The bus matches the
devices and drivers based on this list of exported devices. The list also is
exported to user space so the /sbin/hotplug tools can be used to match drivers
to devices that do not have drivers already loaded. See my article, “Hot Plug”, in
the April 2002 issue of Linux Journal for more information on this interface and
how it works [also available at www.linuxjournal.com/article/5604].

Classes here do not take the general object-oriented definition but, rather, are
things that provide a function to the user. They are not bus- or device-specific
things but functionally look to the user as the same type of device. Examples of
classes are audio devices; pointing devices, such as mice and touchpads;
keyboards; joysticks; IDE disks; and tty devices. The kernel always has had these
kinds of devices, and they traditionally have been grouped together by major/
minor number range, so the user can access them easily. Classes are
represented in the kernel with the struct device_class definition, and they can
be seen as subdirectories of the sysfs directory /sys/class/.

For a description of the whole driver model, along with an introduction to the
structures below the driver model that do all of the real work, see the thorough
document at www.kernel.org/pub/linux/kernel/people/mochel/doc/lca/driver-
model-lca2003.tar.gz. It was written by Pat Mochel for the 2003 Linux.Conf.Au
conference.

Theory in Action

All of the above descriptions sound great on paper, but how does the driver
model actually affect the kernel code? To show this, let us walk through how
the i2c driver subsystem was modified to support this driver model.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6717s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/096/5604.html
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/lca/driver-model-lca2003.tar.gz
http://www.kernel.org/pub/linux/kernel/people/mochel/doc/lca/driver-model-lca2003.tar.gz

The i2c code has lived outside of the main kernel tree for a long time, and it was
offered as a patch for the 2.0, 2.2 and 2.4 kernels. It also was the subject of
“Using the i2c Bus”, by Simon G. Vogl, one of the main authors of the code [LJ,
March 1997, www.linuxjournal.com/article/1342]. In the 2.4 development cycle,
a number of the i2c core files and a few i2c bus drivers were accepted into the
main kernel. In the 2.5 development cycle, a few more drivers were added;
hopefully, all of them eventually will migrate into the main tree. For a good
description of the i2c code, what devices it supports and how to use it, see the
main development site at secure.netroedge.com/~lm78/index.html.

When loaded, the i2c bus drivers, which talk to the i2c controller chips, export a
number of files in the /proc/bus directory. When an i2c device driver is loaded
and bound to an i2c device, it exports files and directories in the /proc/sys/dev/
sensors directory. By moving the representation of the devices and buses to
the kernel driver core, all of these separate files can be shown in their proper
places in /sys.

The i2c Bus

The main i2c bus subsystem needs to be declared in the kernel and registered
with the driver core. To accomplish this, the following code was added to
drivers/i2c/i2c-core.c:

static int i2c_device_match(struct device *dev,
 struct device_driver *drv)
{
 return 1;
}
struct bus_type i2c_bus_type = {
 .name = "i2c",
 .match = i2c_device_match,
};

The name field says what the bus should be called, and the match field points
to our match function. Right now, the match function is left alone, always
returning 1 whenever the driver core wants to try to match a driver with a
device. This logic will be modified at a later time.

Then, in the i2c core startup code, the i2c_bus_type is registered with a call to:

bus_register(&i2c_bus_type);

When the i2c core is shut down, a call is added to unregister this bus:

bus_unregister(&i2c_bus_type);

When the above code runs, the following tree is created in sysfs:

https://secure2.linuxjournal.com/ljarchive/LJ/035/1342.html
http://secure.netroedge.com/~lm78/index.html

$ tree /sys/bus/i2c/
/sys/bus/i2c/
|-- devices
'-- drivers

When the i2c core is removed from the system, the above directories are
removed. This is all that is needed to create the i2c bus.

i2c Adapters

An i2c bus by itself is pretty boring. Now, the i2c bus adapter drivers need to be
modified to register themselves with this bus. To do this, a struct device
variable is added to the struct i2c_adapter structure:

struct i2c_adapter {

 struct device dev;
};

A to_i2c_adapter() macro is defined as:

#define to_i2c_adapter(d) container_of(d,
struct i2c_adapter, dev)

This macro is used by the i2c core to get a pointer to a real i2c_adapter
structure whenever the driver core passes it a pointer to a struct device.

The struct device in the i2c_adapter is a whole variable declared within the
structure, not merely a pointer. This is done so when the driver core passes a
pointer to a struct device, the i2c code can use the to_i2c_adapter() macro to
get a pointer to the real i2c_adapter structure.

Sidebar: container_of()

The individual struct i2c_driver variables are declared in the different i2c bus
drivers. For example, in the i2c-piix4.c driver, there is a variable called
piix4_adapter of type struct i2c_driver. This variable is passed to the i2c core in
the i2c_add_adapter() function, when a PIIX4 adapter is seen by the i2c-piix4
driver.

In the i2c-piix4.c driver, before i2c_add_adapter() is called, a pointer to the
parent device of the PIIX4 adapter needs to be saved within the i2c_driver
structure. This is done with a single line of code:

piix4_adapter.dev.parent = &dev->dev;

dev is a pointer to the struct pci_dev that is passed to the i2c-piix4 driver's PCI
probe function; the PIIX4 is a PCI-based device.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6717s2.html

To link the i2c_driver variable to the sysfs tree, the following lines of code are
added to the i2c_add_adapter() function:

/* add the adapter to the driver core.
 * The parent pointer should already
 * have been set up.
 */
sprintf(adap->dev.bus_id, "i2c-%d", i);
strcpy(adap->dev.name, "i2c controller");
device_register(&adap->dev);

With this code, when the PIIX4 device is detected by the driver, an i2c bus tree
is created and linked to the controlling PCI device:

$ tree /sys/devices/pci0/00:07.3/i2c-0
/sys/devices/pci0/00:07.3/i2c-0
|-- name
`-- power

When the i2c-piix4 driver is unloaded, the i2c_del_adapter() function is called.
The following line of code is added to clean up the i2c bus device:

/* clean up the sysfs representation */
device_unregister(&adap->dev);

i2c Drivers

The i2c bus has a number of different drivers that control access to a wide
range of i2c devices that live on the i2c bus. These drivers are declared with a
struct i2c_driver structure. Within this structure, a struct device_driver variable
is added to allow these drivers to be registered with the driver core:

struct i2c_driver {

 struct device_driver driver;
};

And, a to_i2c_driver() macro is defined as:

#define to_i2c_driver(d) container_of(d, struct
i2c_driver, driver)

An i2c driver registers itself with the i2c core in a call to i2c_add_driver(). To add
driver core support for i2c drivers, the following lines of code are added to this
function:

/* add the driver to the list of
 *i2c drivers in the driver core */
driver->driver.name = driver->name;
driver->driver.bus = &i2c_bus_type;
driver->driver.probe = i2c_device_probe;
driver->driver.remove = i2c_device_remove;

retval = driver_register(&driver->driver);
if (retval)
 return retval;

This sets up the driver core structure to have the same name as the driver and
a bus type of i2c_bus_type; the probe and remove functions are set to local i2c
functions. For now, these functions are declared as:

int i2c_device_probe(struct device *dev)
{
 return -ENODEV;
}

int i2c_device_remove(struct device *dev)
{
 return 0;
}

because no i2c device support has been added yet. These functions will be
called when an i2c device is added or removed from the driver core, but that
will be described in the next column.

When the i2c_add_driver() is called, the driver is registered with the
i2c_bus_type, and it shows up in sysfs as:

$ tree /sys/bus/i2c/
/sys/bus/i2c/
|-- devices
`-- drivers
 |-- EEPROM READER
 `-- W83781D sensors

To remove an i2c driver from the system, the i2c_del_driver() function is called.
In order to remove the i2c driver from the driver core that was registered with
the call to driver_register, the following line of code is added to this function:

driver_unregister(&driver->driver);

Conclusion

We have covered the basics of the new driver core, and to help understand
how this driver model affects different subsystems, we covered the changes
needed to convert the i2c core to support the kernel core bus and driver
model. In the next Driving Me Nuts column, we will cover how to add i2c device
support and how the probe() and remove() functions should look.

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Memory Leak Detection in C++

Cal Erickson

Issue #110, June 2003

Don't put off fixing memory leaks. Make one or more of these convenient tools
a part of your development process.

An earlier article [“Memory Leak Detection in Embedded Systems”, LJ,
September 2002, available at www.linuxjournal.com/article/6059] discussed the
detection of memory leaks when using C as the programming language. This
article discusses the problem of detecting memory leaks in C++ programs. The
tools discussed here detect application program errors, not kernel memory
leaks. All of these tools have been used with the MontaVista Linux Professional
Edition 2.1 and 3.0 products, and one of them, dmalloc, ships with MontaVista
Linux.

When developing application programs for embedded systems, designers and
programmers must take great care with using system memory resources.
Unlike workstations, embedded systems have a finite memory source. Typically,
no swap area is available to idle programs. When the system uses up all of its
resources, nothing is left to do but panic and start over or kill some programs
to make room for the needed resources. Therefore, it is important to write
programs that do not leak memory. Many tools aid programmers in finding
these resource leaks. All of the tools discussed here come with their own test
programs.

One method of testing, which I have seen used successfully by application
developers, involves using a workstation to develop prototype code and
debugging as much as possible on it. Using memory leak tools in this manner is
strongly advised. By debugging on a workstation, the application programmer
can be assured that the transition to the target processor will be easier. A
major reason for using workstations is they are cheap, and everybody involved
has one. Targets, on the other hand, are usually few and in great demand.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/101/6059.html

Most memory leak detection programs are available as full source. They
typically have been built on an x86-based platform. Running them on non-x86
targets requires some porting. This porting effort could be as simple as a
recompile, link and run, or it could require changing some assembler code from
one platform to another. Some of the tools come with hints and suggestions for
use in cross-compiling environments.

dmalloc

The author of dmalloc, a tool I covered in detail in the September 2002 article,
states that his knowledge of C++ is limited, and thus the C++ detection of
memory leaks also is limited. In order to use dmalloc with C++ and threads, it
has been necessary to link the application as static.

ccmalloc

The ccmalloc tool is a memory profiler with a simple usage model that supports
dynamically linked libraries but not dlopen. It detects memory leaks, multiple
de-allocation of the same data, underwrites and overwrites and writes to
already de-allocated data. It displays allocation and de-allocation statistics. It is
applicable to optimized and stripped code and supports C++. It also provides
file and line number information for the whole call chain, not only for the
immediate caller of malloc/free, and it supports C++. No recompilation is
needed to use ccmalloc; simply link it with -lccmalloc -ldl or ccmalloc.o -ldl.
ccmalloc provides efficient representation of call chains, customizable printing
of call chains, selective printing of call chains, a compressed log file and a
startup file called .ccmalloc. The major documentation is found in a file named
ccmalloc.cfg. The test files included with the program provide more
documentation. nm and gdb are required to get information about symbols
and gzip or to compress log files.

NJAMD

NJAMD is, as the author states, “not just another malloc debugger”. As with
most memory allocation debuggers, the standard allocation functions are
replaced with new ones that perform various checks as memory is used.
Specifically, it looks for dynamic buffer over/underflows and detects memory
reuse after it is freed. The library built for NJAMD can be LD_PRELOADed, or it
can be linked to the program. It creates a large memory buffer on the first
memory allocation, 20MB, and it then carves this up as the program needs
memory.

NJAMD can be used alone, with a front end or from within gdb. It has a utility
that allows postmortem heap analysis. Another feature allows the application
being debugged to skip recompilation; simply preload the library. NJAMD also is

capable of tracing leaks in library functions that wrap malloc and free, GUI
widget allocators and C++ new and delete. Often a memory leak is not
discovered immediately but lurks, waiting to strike at the most visible moment.
Tracking this down can take a long time. NJAMD has many environment
variables that allow setting varying levels of detection. As with most debugging
tools, performance can be an issue with NJAMD, so the tool should be used
only during development. Deploying with the tool enabled can result in slower
systems.

YAMD

YAMD (yet another memory debugger) is another package for trapping the
boundaries of allocated blocks of memory. It does this by using the paging
mechanism of the processor. Read and write out-of-bound conditions are
detected. The detection of the error occurs on the instruction that caused it to
happen rather than later, when other accesses occur. The traps are logged with
the filename and line number with trace-back information. The trace back is
useful because most memory allocation is done through a limited number of
routines.

The library emulates the malloc and free calls. Doing this catches many indirect
malloc calls, such as those made by strdup. It also catches new and delete
actions. If the new and delete operators are overloaded, however, they cannot
be caught.

YAMD, like other programs of its type, needs a large amount of virtual memory
or swap available to perform its magic. On an embedded system, though, this is
typically not available. The earlier suggestion to use this tool on a workstation
to do prototype debugging is encouraged here as well. When this debug is
done, moving the application to the target can proceed with confidence that
most, if not all, memory leaks have been found.

YAMD provides a script, run-yamd, that is used to make the program execute
easily. It offers several options to try to recover from certain conditions. A log
file can be created when the program being checked performs a core dump. A
debugger can be used to debug YAMD-controlled programs. However,
problems can arise using a debugger when YAMD is preloaded rather than
statically linked with the program.

Valgrind

Valgrind is a relatively new open-source memory debugger for x86-GNU Linux
systems. It has more capabilities than earlier tools, but it runs only on x86
hosts. When a program is run under the control of Valgrind, all read and writes
to memory, as well as calls to malloc, free, new and delete, are checked.

Valgrind can detect uninitialized memory, memory leaks, passing of
uninitialized or unaddressable memory, some misuse of POSIX threads and
mismatched use of malloc/free and new/delete actions.

Valgrind also can be used with gdb to catch errors and allow the programmer
to use gdb at the point of error. When doing this, the programmer can look for
the source of the problem and fix it much sooner. In some cases, a patch can
be made and debugging can continue. Valgrind was designed to work on large
as well as small applications, including KDE 3, Mozilla, OpenOffice and others.

One feature of Valgrind is its ability to provide details about cache profiling. It
can create a detailed simulation of the CPU's L1-D, L1-I and unified L2 cache,
and it calculates a cache hit count for every line of the program being traced.
Valgrind has a well-written HOWTO with plenty of examples. Its web site
contains a lot of information and is easily traversed. Many different
combinations of options are available, and it is left to users to determine their
favorite combinations.

Valgrind's error display contains the process ID for the program being
examined, followed by the description of the error. Addresses are displayed
along with line numbers and source filenames. A complete backtrace also is
displayed. Valgrind reads a startup file, which can contain instructions to
suppress certain error-checking messages. This allows you to focus more on
the code at hand rather than pre-existing libraries that cannot be changed.

Valgrind does its checking by running the application in a simulated processor
environment. It forces the dynamic linker/loader to load the simulator first,
then loads the program and its libraries into the simulator. All the data is
collected while the program is running. When the program terminates, all the
log data is either displayed or written to log files.

mpatrol

The mpatrol library can be linked with your program to trace and track memory
allocations. It was written and runs on several different operating system
platforms. One distinct advantage of the library is it has been ported to many
different target processors, including MIPS, PowerPC, x86 and by some
MontaVista customers, to StrongARM targets.

mpatrol is highly configurable; instead of using the heap, it can be set to
allocate memory from a fixed-size static array. It can be built as a static, shared
or threadsafe library. It also can be one large object file so it can be linked to
the application instead of contained in a library. This functionality provides a
great deal of flexibility for the end user.

The code it creates contains replacements for 44 different memory allocation
and string functions. Hooks are provided so these routines can be called from
within gdb. This allows for debugging of programs that use mpatrol.

Library settings and heap usage can be displayed periodically as the program
runs. All the statistics gathered during runtime are displayed at program
termination. The program has built-in defaults that can be overridden by
environment variables. By changing these environment variables at runtime, it
becomes unnecessary to rebuild the library. Tuning of the various tests can be
done dynamically. All logging is done to files in the current working directory;
these can be overridden to go to stdout and stderr or to other files.

As the program is running, call stack trace-back information can be gathered
and logged. If the program and associated libraries are built with debug
information about symbols and line numbers, this information can be
displayed in the log file.

If at some point the programmer wants to simulate a stress test on a smaller
memory footprint, mpatrol can be instructed to limit the memory footprint.
This allows for testing conditions that may not be readily available in the lab
environment. Stress testing in emulating a customer environment or setting up
a harsh test harness is made easier with this feature. In addition, the test
program can be made to fail a random set of memory allocations to test error-
recovery routines. This ability can be useful for exception handling in C++.
Snapshots of the heap can be taken to allow the measuring of high and low
watermarks of memory use.

Insure++

The Insure++ product by Parasoft is not GPLed or free software, but it is a good
tool for memory leak detection and code coverage, very similar to mpatrol.
Insure++ does do more than mpatrol in the area of code coverage and provides
tools that collect and display data. Trial copies of the software can be
downloaded and tried for a specified time period on non-Linux workstations.

The product installs easily under Linux but is node-locked to the computer on
which it is installed. Insure++ comes with a comprehensive set of
documentation and several options. The code coverage tool is separate but
comes with the initial package.

Insure++ provides a lot of information about the problems it finds. To use
Insure++, it is necessary to compile it with the Insure++ front end, which passes
it to the normal compiler. This front end instruments the code to use the
Insure++ library routines. During the compiler phase, illegal typecasts are
detected as well as incorrect parameter passing. Obvious memory corruption

errors are reported. During runtime, errors are reported to stderr but can be
displayed by a graphical tool. When building an application, either the
command line or makefiles can be used, facilitating the building of projects and
large applications.

Execution of the program is simple. Insure++ does not require any special
commands to execute; the program is run as if it were a normal program. All
the debug and error-trapping code is contained in the Insure++ libraries that
were linked with the program.

An add-on tool, called Inuse, displays in real time how the program uses
memory. It can give an accurate picture of how memory is used, how
fragmented it gets and subtle leaks that seem small but could add up over
time. I had an experience with a client who found that a particular C++ class
was leaking a small amount of memory that, on a workstation, was seen to be
quite small. For an embedded system that was expected to be running for
months and possibly years, the leak could become quite large. With this tool,
the leak was easily traced, found and fixed. Other available tools did not catch
this leak.

Code coverage is analyzed by another tool, TCA. As the program is run with
Insure++ turned on, data can be collected that, when analyzed by TCA, paints
an accurate picture of what code was executed. TCA has a GUI that enhances
the display of code coverage.

Resources

Cal Erickson (cal_erickson@mvista.com) currently works for MontaVista
Software as a senior Linux consultant. Prior to joining MontaVista, he was a
senior support engineer at Mentor Graphics Embedded Software Division. Cal
has been in the computing industry for over 30 years, with experience at
computer manufacturers and end-user development environments.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6556s1.html
mailto:cal_erickson@mvista.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Customizing Plone

Reuven M. Lerner

Issue #110, June 2003

Using CMF controls, custom skins and other Zope-based tools, Plone can look
and feel however you want.

The market for content management systems (CMS) continues to grow by leaps
and bounds, which should come as no surprise. Several years ago, a CEO might
have wondered whether to create a web site for his or her company.
Nowadays, the question is not whether to put up a site, but how to manage the
people who run it and organize the information it contains. A good CMS makes
it easy to handle all of this, by taking care of users, groups, permissions and
scheduled publication.

But as anyone experienced with mission-critical software knows, software
rarely (if ever) handles everything you need out of the box. Companies such as
Vignette and Documentum, which sell and service their own content
management systems, use this to their advantage and demand consulting and
support fees from their customers. CMS customers would prefer to put as
much power as possible in their own hands, both to avoid paying consulting
fees and to have a greater degree of freedom on a day-to-day basis.

It should come as no surprise that open-source content management solutions
allow and even encourage users to modify their own CMS software. But all too
often, modifying a system means changing the source code, which not
everyone is prepared or able to do. Writing a CMS that is simultaneously
powerful, flexible and simple for nonprogrammers to customize has turned out
to be a difficult and challenging task, one that is likely to occupy the time of
many CMS vendors for years to come.

An increasingly popular open-source CMS, and one that makes it easy to
customize a site's look and feel without too much programming, is Plone. Plone
does not exist in a vacuum but is built on top of Zope's Content Management
Framework (CMF), a set of APIs for creating content management systems. As

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

we saw last month, Plone makes it easy to create a web site that has a number
of advanced features built in, including an event calendar, a news archive and a
search engine.

But what happens when you want to change things? What if you don't like
Plone's default look and feel? Luckily, Plone was designed to be modified in a
number of ways and at a number of different levels. This month, we look at
some of the ways in which Plone can be modified. Along the way, we learn
quite a bit about Zope's CMF, which serves as an excellent segue to next
month's CMF tour.

Basic Changes

One of the most basic ways you can customize Plone is by modifying the look
and feel. To do this, you need to log in to Plone as a site manager. Assuming
you configured Plone in the standard default way, there are two ways to
accomplish this. The simpler one is to log in to Plone as a site administrator,
giving the user name and password you would use with the web-based Zope
management interface (ZMI). Plone normally inherits user names, passwords
and roles from its surrounding environment, so you can log in to Plone with
those credentials.

Unfortunately, logging in to Plone means you aren't recognized as being logged
in by the rest of the Zope site. To avoid this problem and to be able to manage
both Zope and Plone, log in to your site at its /manage URL. For example, if your
site is located on www.example.com, you can try to log in as the administrator
by going to www.example.com/manage.

Once you have entered a Plone site as a site manager, you should see a
menubar across the screen, under the main menu of boxes and right over the
“you are here” line. Click on the menu item named Plone setup.

Once inside Plone setup, you are asked to answer several questions, such as
the name of your Plone site (or portal, as Plone refers to it) and the e-mail
address from which system messages should be sent. One of the options
allows you to choose a default look, with about a dozen such looks provided in
the default installation. A change to the site's default look takes place
immediately, allowing you to view and then change whatever look you have
chosen.

As the name indicates, the color scheme you choose here is only the default. All
users on the system can go into the My Preferences menu and change their
own looks. Thus, even if you want your site to have the look of New Mozilla, a
user with more conservative tastes can choose something else.

Using CMF Controls

Unfortunately, the majority of Plone cannot be configured from within Plone
itself. Rather, you must use the Zope management interface to modify Plone as
if it were a simple component of the CMF. This means using a number of CMF
controls to change the default Plone look and feel.

I was able to get to these controls by pointing my browser to the folder above
the place where I had created my Plone instance. That is, if I access my Plone
site at www.example.com/atf, I get to the management interface at
www.example.com/manage. The management interface shows all of the
objects in the top-level folder, including my Plone instance. Clicking on the
Plone object (atf, in our particular case) brings up a long list of objects, most of
which begin with the word portal: portal_catalog, portal_calendar, portal_skins,
portal_membership and portal_undo, among others. Objects with wrench icons
are CMF tools, allowing you to modify part of your Plone instance. For example,
the portal_actions tool allows us to modify the different box-like buttons that
appear in various places within a Plone site. These include the buttons at the
top of each page, such as news and advanced search, and the buttons that
appear when a site administrator wants to edit content over the Web. Each
action is controlled by seven fields:

• The name of the action that is displayed to the outside world within the
box.

• A unique identifier.
• The action that should be taken when the user clicks on a box, which is

expressed in TALES format (from the Zope Page Templates system for
web templates), normally pointing to a URL.

• The (optional) conditions under which the button should be visible. For
example, the Paste button should appear only if there is valid information
in the current clipboard, a condition represented in TALES as folder/
cb_dataValid.

• The permission a user must have in order to see this button. For example,
if an action has View permission, then anyone authorized can see the
action box and is able to click on it. By contrast, if an action has Modify
folder content permission, then only the users authorized to modify
content can see the action's button box.

• The category in which the button should be placed, such as portal_tabs
(shown at the top of the screen) or object_tabs (at the top of the screen).

• Finally, we can show or hide actions by clicking and unclicking the check
boxes.

Adding, deleting and modifying actions is quite easy. But what if we want to
add, remove or shift around the portlets that appear on the right and left sides

of a Plone site? These items are known as slots in Plone, and they are
customized by modifying the properties of the Plone instance itself. That is, you
must click on the Plone instance you created (atf in this case) and then on the
properties tab at the top of the page.

The left_slots and right_slots properties determine what is displayed on the
side. If you have recently installed a Plone instance, you immediately will notice
that each slot contains more lines than slots displayed at the top of the screen.
This is because a portlet is displayed only if there is something to display. If, for
example, no current events are defined, Plone does not display your events
portlet at all. The portlet named in the third line of left_slots thus might appear
first, second or third, depending on whether the first and second contain any
current content.

On my own site, I was able to move the event listing to the left side and the
calendar to the right side (and remove the login portlet altogether), simply by
modifying the definitions of the left_side and right_side properties. Making
these sorts of changes is both easy and quick, and they allow you to include
only the functions you want on your site.

Finally, click on the portal properties link that ZMI displays within your Plone
instance. This has a Plone icon rather than a wrench icon, indicating that this
tool is specific to Plone and not generally available in the CMF. Clicking on this
brings up a list of four different property lists (form_properties,
navigation_properties, navtree_properties and site_properties), each of which
allows us to change some of the properties on our Plone site.

If you click on site_properties, the list might seem strangely familiar. That's
because site_properties lists many of the same settings we saw earlier. Plone
itself exposes only the most common and necessary settings; more complex
and advanced settings are available through the ZMI. It doesn't really matter
whether you change the date format, for example, from the ZMI or the Plone
settings page; in either case, the site immediately changes to reflect the new
value.

Custom Skins

We can modify quite a bit of our Plone site by changing property definitions
and using the ZMI. But if you really want to change your Plone site, you need to
modify the page templates (ZPTs) that come with the system. This is easier said
than done. The default ZPTs are stored in the filesystem, in such directories as
$ZOPE_ROOT/lib/python/Products/CMFDefault/skins (for CMF content) and
$ZOPE_ROOT/lib/python/Products/CMFPlone/skins/ (for Plone content).
Modifying the skins within these directories affects all Plone instances, which is
not what you want.

Plone takes this possibility into account and allows you to copy one or more
ZPTs into Zope's object database (ZODB), where you can edit it as you would
any other ZPT. For example, from within the ZMI, enter the portal_skins tool
and then the plone_templates folder within portal_skins. plone_templates looks
like a normal Zope folder (aside from the different icon), but it reflects the
contents of files on disk rather than those within ZODB. plone_templates
contains the ZPTs for most of the pages you see within Plone. The ui_slots
folder within plone_templates contains ZPTs that determine how the portlets
look.

If you want to modify the header that appears at the top of each page within
your Plone site, you can click on the header icon. This brings you to a page that
lets you view, but not modify, the header page template. In order to modify the
header, you must export it to the custom folder, which exists only within ZODB.
Click on Customize, and you can see that the URL has hung within the ZMI,
putting you now within portal_skins/custom rather than within portal_skins/
plone_templates. This custom folder is the central repository for all customized
templates, and you can edit them as you would any other ZPT on the system.
Because the custom folder is specific to each instance of Plone, you can be sure
that any changes you make affect only what you are working on.

If nothing else, it is worth looking through the header and footer page
templates to see the great deal of customization work that was done, largely in
JavaScript, to make sure that Plone would work on different browsers. Given
that every browser has somewhat different support for CSS and JavaScript, it is
rather impressive to see the great deal of effort the Plone authors put into
keeping things as level as possible.

Of course, this means you might be in for a surprise or two. My father, who
used Netscape 4 until quite recently, complimented me on my new site and on
the fact that it chastised him for not using a more modern browser. Because I
have long been using the latest versions of Mozilla and Galeon, I hadn't ever
seen this message; it never occurred to me that one would appear. The Web
would be a better place if every application were so clever and conscientious
about checking cross-platform compatibility.

Conclusion

Plone is probably the best-known and most popular application written with
Zope's CMF, one that is powerful and easy to customize. Between Plone-specific
customization screens, changes that we can make with the ZMI and
modifications to the page templates by importing them into the custom folder
in ZODB, we can change things in a great many ways. We also can add new
custom skins to Plone, contributing to the already interesting and varied
options that come with the distribution.

Of course, Plone is only one application built using Zope's CMF. Next month, we
will peel away another abstraction layer, looking at the CMF directly and seeing
what sorts of applications we can create with it. As you will see, there is good
reason why the CMF is attracting a great deal of attention in the Zope
community, as well as from Zope Corporation itself.

Resources

Reuven M. Lerner (reuven@lerner.co.il) is a consultant specializing in open-
source web/database technologies. He and his wife, Shira, recently celebrated
the birth of their second daughter, Shikma Bruria. Reuven's book Core Perl was
published by Prentice Hall in early 2002, and a second book about open-source
web technologies will be published by Apress in 2003.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6725s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Firewall Builder, Part II

Mick Bauer

Issue #110, June 2003

Configure bastion host and firewall iptables policies so you can see exactly
what the security policy is.

Last month we used Firewall Builder to create a set of reusable objects for
iptables policies. In this month's column, I show you how to use Firewall Builder
to create two such rule sets: one for a bastion host that needs to defend itself
and another for a firewall that needs to defend entire networks.

Local Rules on a Bastion Host

Let's consider the bastion host scenario first. A common misconception about
Netfilter/iptables, and about packet filtering in general, is that packet inspection
is strictly a function of firewalls. In-depth defense, however, dictates that it's
foolish to put all your security eggs in one basket. Although you must use a
carefully configured and monitored firewall to protect all your internet-
connected hosts, those hosts also should be able to defend themselves,
especially the bastion hosts on which you host publicly accessible services, such
as FTP and WWW.

If, for example, your public web server runs Linux 2.4, it follows that you should
configure its local Netfilter rules to provide an extra level of defense in case a
clever attacker subverts or otherwise gets around your enterprise firewall. If
your server runs a pre-2.4 kernel, you need to use ipchains rather than
Netfilter/iptables. You also need to find a contributed ipchains compiler plugin
for Firewall Builder to build your scripts.

Loopback Rules

Step one for creating any firewall rule base, even for a bastion host, is to give
free rein to the local loopback interface. Loopback is used for certain
transactions between local processes and dæmons. Without loopback-allowing

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

rules, things like name-service caching and SSH port forwarding break when
you run the iptables script.

Suppose you've got a web server to harden, named Trillian. You've installed
Firewall Builder on your administrative workstation; remember, we avoid
running the X Window System and therefore X-based applications on bastion
hosts. You've subsequently created some objects that describe hosts, networks
and groups in your environment, plus a firewall object for Trillian, complete
with a loopback-interface definition. In other words, you've done the things I
described in last month's column.

You need two rules for Trillian's loopback interface: one that allows all traffic
leaving the loopback interface and one that allows everything coming in to it.
Follow these steps to create two such rules (Figure 1):

1. Beneath and to the right of your firewall's loopback interface sub-object,
on the left-hand side of the Firewall Builder screen (in Figure 1, this is
named loopback), select the loopback interface's policy, which should be
empty.

2. In the Rules menu, select Append rule at the bottom. A blank rule appears
in the right-hand half of the window.

3. Drag the firewall icon next to the name Trillian into the blank rule's Source
field. Be sure to wait until the cursor changes into a plus (+) before
releasing the mouse button.

4. Right-click in the new rule's Action field and select Accept from the menu.
5. Right-click in the rule's Direction field and select Outbound.
6. Right-click on the paper and pencil icon in the rule's Options field and

select Turn logging OFF.
7. Right-click again in the rule's Options field and select Modify options. In

the resulting window, check the box near the bottom of the window,
which disables stateful inspection. We don't need to waste CPU overhead
on state tracking for loopback traffic.

8. Optionally, right-click in the new rule's Comment field and select Edit
Comment if you wish to write a brief reminder of the rule's purpose,
perhaps “allow loopback outbound”.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f1.large.jpg

Figure 1. Loopback Interface Rules

To create the second rule in Figure 1, repeat steps 2 through 8. In step 3,
however, drag Trillian's icon into the new rule's Destination field rather than its
source. In step 5, set the direction to Inbound.

How, you may ask, do these rules work? First, you should understand that they
apply only to the loopback interface. It's possible to create rules specific to any
interface, rules that are parsed before your firewall's global policy. Although we
used Trillian as the source and destination, respectively, of our two loopback
rules, this doesn't mean that the rules match packets with particular IP
addresses, that is, Trillian's. They'll match any packets leaving or entering the
loopback interface.

This leads me to my last point about loopback rules. It may seem
counterintuitive to use two rules referencing the firewall object rather than one
rule that says any source to any destination should be accepted. But in my own
tests, the single-rule approach caused Firewall Builder to write its loopback
rules for the FORWARD chain rather than for INPUT and OUTPUT, which
counterproductively killed loopback on my test system. Changing to separate
loopback in and loopback out rules fixed the problem. Don't worry; this is the
only time I've seen Firewall Builder choose the wrong chain for its rules. At that,
it did so only for single-homed hosts, not multi-interfaced firewalls.

Bastion Host Policy

Once your bastion host's loopback needs have been attended to, turn your
attention to its global policy. This requires a little thought. You want Netfilter to
provide a meaningful amount of protection but not at the expense of desired
functionality.

Our example host, Trillian, is a web server, so we want to allow other hosts to
access it with HTTP and HTTPS. We also want to allow Trillian to perform DNS

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f1.large.jpg

lookups for coherent logging. In addition, some sort of administrative
connectivity should be allowed. The tool of choice for this purpose is SSH, so
we'll also allow inbound SSH connections but only from our internal network.
Figure 2 shows such a policy as defined for Trillian.

Figure 2. Policy for a Bastion Host

I'll spare you a blow-by-blow description of how I created every single rule, but
several things are worth noting. First, in the object hierarchy on the left-hand
side of the window, you can see that I had selected the global Policy object in
the hierarchical level directly below Trillian, rather than either of the interface-
specific policy objects.

I also referenced not only the Trillian object, but also a network object named
Net_Internal, which is the example network object from last month's column.
This object refers to an entire network's worth of IP addresses, 192.168.111.0 to
be exact. Whereas rule 02 uses a single IP address (Trillian's) as its source IP
address, rule 03 matches packets whose source IP address is any of the entire
range, 192.168.111.1-192.168.111.254.

Another important tip for rule building is to get at Firewall Builder's handy
prebuilt service objects, click the Standard tab on the left-hand side of the
window. Be careful, though; if you do anything besides drag a service object
(for example, dns_tcp) into your rules, the rules display on the right-hand part
of the window is replaced with information about whatever you've selected.

In other words, if you're working on a policy, you can click on the Standard tab,
click on the + (expand) and - (collapse) icons in the hierarchy window and click
and drag service objects from it, all without changing the mode of the right-
hand part of the window. But if you simply select a service object or category in
the Standard hierarchy (by clicking on it once without dragging), that object's

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f2.large.jpg

properties are displayed on the right. You have to go back to the User tab and
reselect your firewall's global policy to display your rules again. You do not lose
any data, but this can be inconvenient and unsettling if you aren't expecting it.

A more substantial observation is that in all of these rules, I left stateful
inspection turned on. I skipped step 7 from our loopback-rules procedure.
Normally, we want the kernel to keep state information on network
transactions; this is why we can describe most transactions with a single
bidirectional rule rather than with two unidirectional rules. For example, thanks
to stateful inspection, whenever a transaction matches rule 02 from Figure 2,
which allows inbound SSH traffic from hosts on the internal network, Trillian's
kernel matches not only those inbound SSH packets, but also the SSH packets
that Trillian sends back out in reply. Had I turned off stateful inspection for rule
02, I'd need another rule allowing all packets originating from TCP port 22 on
Trillian to accommodate those replies.

Finally, all rules but the last one have logging turned off, as described in step 6
of our loopback-rules procedure. Most people don't find it a useful or justifiable
use of disk space or I/O overhead to log every packet their firewall rules
process. Personally, I tend to focus on dropped packets and forego logging on
allow rules. Thus, the sample rules in Figure 2 end with a cleanup rule at the
bottom that explicitly drops any packet not matching the other rules or the
rules in any interface-specific policies such as the loopback policy.

This rule's sole purpose in life is for logging. Firewall Builder automatically sets
the default policy for all my iptables chains to DROP, but these dropped-by-
default packets aren't logged unless you tell Netfilter to do so.

An experimental dropped-table patch is available for Netfilter that allows
automatic logging of all dropped packets, but I recommend you wait for this
code to stabilize before going out of your way to compile it into your kernel. If
you can't wait for some reason, you can access this feature from Firewall
Builder by selecting your firewall object, clicking its Firewall Properties tab and
checking the box next to Log all dropped packets. For more information on the
dropped-table patch, see www.netfilter.org/documentation/pomlist/pom-
summary.html.

Compiling and Installing the Policy

After you've finished your firewall policy, you need to convert it to an actual
iptables script. To do so, first make sure that on the screen's left-hand hierarchy
view your firewall's object, its global policy or one of its interface policies is
selected—it doesn't matter which. Then, pull down the Rules menu and select
Compile. Figure 3 shows the result.

http://www.netfilter.org/documentation/pomlist/pom-summary.html
http://www.netfilter.org/documentation/pomlist/pom-summary.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f3.large.jpg

Figure 3. Compiling the Policy

Upon successful policy compiling, Firewall Builder writes a file whose name
consists of the name of the firewall object whose policy you compiled and the
suffix .fw. The example script we produced, trillian.fw, is shown in Listing 1.
Listing 1 has been modified slightly due to space requirements, and some
housekeeping material has been removed. All of the actual rules mentioned in
the article are present.

Listing 1. trillian.fw

This script now can be copied over manually to Trillian and run as is, or it can
be converted manually into a startup script appropriate to Trillian's Linux
distribution, for example, a standard Red Hat 7.3 startup script. Easier still, you
can copy it over automatically and activate it with a Firewall Builder installer
script such as fwb_install, available under contrib at sourceforge.net/project/
showfiles.php?group_id=5314.

The latter in particular is an elegant and simple way to copy and activate your
firewall scripts securely; fwb_install uses scp to copy the script to /etc/firewall
on the remote host and then ssh to execute the script remotely. If you've
downloaded fwb_install somewhere on your Firewall Builder system, you can
configure Firewall Builder to use it from within each firewall object's Compile/
Install properties.

Be sure to tweak fwb_install manually to match your system settings and to set
up SSH keys for fwb_install to use. Once you've set this up, all you need to do to
install your policies after compiling them is pull down the Rules menu and
select Install.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715l1.html
http://sourceforge.net/project/showfiles.php?group_id=5314
http://sourceforge.net/project/showfiles.php?group_id=5314

As handy as fwb_install is, you'll want a startup script in place on your target
system that also executes the firewall script on startup and after any reboot.
Otherwise, the system is vulnerable between each startup or reboot and the
next time you execute Install from within Firewall Builder. It's easy to copy and
adapt existing scripts in your system's /etc/init.d directory.

Policy for a Real Firewall

I've devoted most of this column to the bastion host example, but building a
policy for a multihomed (multi-interfaced) network firewall is quite similar.
Create loopback policies, create anti-spoofing policies for the other interfaces,
create a global policy, compile the policy and install it.

The big differences have to do with the fact that a firewall, unlike a server, has
multiple network interfaces. Because a single-interfaced system receives all
packets except loopback at one physical point, it can't distinguish spoofed
packets from legitimate packets; it must take each packet's source-IP address at
face value. But a multihomed system can distinguish easily between packets
that truly originate from local networks and packets that arrive from the
Internet but have forged source-IP addresses matching a local or trusted
network.

For instance, our example internal network is numbered 192.168.111.0 (subnet
mask 255.255.255.0). If we have a firewall named Slartibartfast between this
network and the rest of the world, we can use anti-spoofing rules to tell
Slartibartfast to drop any packet immediately from any interface other than the
one facing our internal network, if that packet has a source IP beginning with
192.168.111. Such a packet is obviously spoofed. Figure 4 shows Slartibartfast's
anti-spoofing rule.

Figure 4. Anti-Spoofing Firewall Rules

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f4.large.jpg

Before I made this rule, I created several network objects that refer to the
reserved IP address spaces defined in RFC 1918, “Address Allocation for Private
Internets”. RFC 1918 address spaces are for use only within an organization and
can't be routed over the Internet, so any internet firewall should consider
inbound packets bearing such addresses to be spoofed, which is precisely what
the rule in Figure 4 does. Because my RFC 1918 Class C object expands to
192.168.0.0, subnet mask 255.255.0.0 and my internal network address is
192.168.111.0 (part of RFC 1918 address space), it wasn't necessary to include
my Net_Internal object in this rule.

By the way, if you're not familiar with RFC 1918, my RFC 1918 Class A object
refers to 10.0.0.0, subnet mask 255.0.0.0, and RFC 1918 Class B is 172.16.0.0,
subnet mask 255.240.0.0.

Global Rules

Figure 5 shows Slartibartfast's global policy; because this article is already too
long I won't explain it in-depth. But the whole point of Firewall Builder is to
display firewall rules in an easy-to-read format, so Figure 5 should be self-
explanatory.

Figure 5. Global Policy for a Network Firewall

Speaking of self-explanatory, did I mention that all rules, whether loopback,
anti-spoofing or global, can be generated quickly and automatically using
Firewall Builder's policy druid? You can run it by selecting a firewall object,
pulling down the Rules menu and selecting Help me build a firewall policy.

Don't get too irked at me for not mentioning this until after making you slog
through all my instructions on building policies the hard way. Firewall rules are

https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6715f5.large.jpg

too important to trust entirely to druids. Hopefully, you now can understand
and tweak or even correct the rules Firewall Builder generates for you.
Regardless of how you build your policies, I hope you find Firewall Builder as
useful as I have.

email: mick@visi.com

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant for Upstream Solutions LLC in Minneapolis, Minnesota. Mick spends
his copious free time chasing little kids (strictly his own) and playing music,
sometimes simultaneously. Mick is author of Building Secure Servers With
Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Click-N-Run: an Easier Future for Customers?

Doc Searls

Issue #110, June 2003

The remaining barriers to computer ease of use aren't technical but results of
the way vendors distirbute their software.

In February 2003, I took the train from my home in Santa Barbara, California to
the Desktop Linux Summit in San Diego, California. I paid around $50 for a
round-trip business-class seat, which was cheaper than gas for a car, cushier
than a first-class airplane seat and equipped with AC power for my laptop. Most
of the trip was through paradise: emerald-green farmland, red-rock canyons
and suburbs bounded by enormous mountains capped in snow.

But the most interesting part of the trip, at least for me, was the huge industrial
district that starts in the San Fernando Valley, follows the concrete trough of
the Los Angeles river through downtown and then spreads across several
hundred square miles of Los Angeles and Orange county flatlands. Sliding past
the window are endless yards of lumber, fabricated metal and piping of all
sizes. To me, it's a living model of the computer industry's future—one in which
commodities are considered good and necessary things.

Throughout its short history, the computer industry has treated commodity
software as undesirable stuff with low margins or no margin at all. Yet, mature
industries thrive on commodities. Lumber and mining companies, metal
fabricators and blow-molded plastic manufacturers are all in commodity
businesses. When the software industry grows up, it will come to a new
understanding of commodity value, especially of the commodity we call free
software—that's not “free” as in beer or speech, but free as in limestone, wood
and silicon. Those are all elemental substances, freely produced by nature. In a
similar manner, free software is produced by human nature.

It's hard to see the economic value of free software in an industry still
dominated by a giant mutant company that leverages its monopoly position to
extract 85% margins from customers who have little choice in the matter.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I believe I witnessed the dawn of a mature software industry at the Desktop
Linux Summit in San Diego.

I wasn't quite sure what to expect before I got there. The show's planning was
beset by problems. There was a communication breakdown of some kind
between groups setting up the show. Some speakers and companies dropped
out. The one thing everybody agreed on was that the show was less about
Linux than Lindows. And after I got a chance to see what Lindows.com was up
to, I decided that was a fine thing.

If the Lindows folks succeed at their mission, which I think they have a very
good chance of doing, Linux on the Desktop (LOTD) will finally become a reality
and not merely a nearly empty hole between servers and embedded devices,
where Linux is clearly well on the road to World Domination.

While Dell, Gateway, HP and IBM all sit on their hands and wait for the market
to scream at them to get serious about Linux desktops, Lindows.com does the
hard work of actually making the market—not only with a cool new distribution,
but with a business model that creates a win-win market for both free and
proprietary software.

Lindows.com is the creation of Michael Robertson, the founder and former
president and CEO of MP3.com. Robertson easily could have retired to a life of
leisure and portfolio management after selling MP3.com to Vivendi. Instead, he
decided to do something no venture capitalist would ever fund: compete
straight up with Microsoft in the operating system business.

Where others look at Microsoft's success as a problem, Robertson sees it as
pure opportunity. He's kind of twisted that way. Here's what he told me when I
interviewed him at the show:

Right now we're watching hardware vendors duke it
out over 7% gross margins. Terrible business.
Meanwhile, Microsoft is taking all the high-margin
software profits for themselves. So you have this
cutthroat business making the razor handles, and
Microsoft taking all the profits making the blades.

In the future that's going to change. The hardware
companies will partner with companies like
Lindows.com, which are interested in making the
relationship work for both sides. They'll say, “Hey, I'm
willing to invest in factories and companies that will
put together PCs and market and sell and support
them. But I want partners who will get me more than
just margins on the raw hardware. Any razor blades
you're selling to your customers—virus protection,
web filtering, e-mail service, whatever—I want a piece
of that.” And we're here to give that to them.

I'm not just talking “add an SKU to your on-line web
store.” We're already doing that with Walmart.com. I'm
talking about really marketing in a big way, one that
relieves these big hardware companies of their painful
situation. They're all selling a commodity, which means
the leanest and meanest low-cost provider will win.
That's Dell. The other guys—the losers of today—are
going to say, “We need to change the model a little bit,
by looking for a better deal from partners with a better
model for selling what runs on their OS.”

That better model is called Click-N-Run, which is built into LindowsOS, which is
built on Debian GNU/Linux and KDE.

Think of LindowsOS as the way you would set up a computer for maximal user
convenience, if you didn't have legacy software licensing issues to worry about.
Robertson's goal is ease of use that's plainly superior to Windows, especially
when it comes to the hard part: adding new software. That's what Click-N-Run
is all about. You want the drivers for your new HP printer? Click on the
download link and LindowsOS runs the installer, which brings up the
Konqueror browser. After that, it's a quick direction-following exercise. Soon
you're printing on your LaserJet; and thanks to the Debian dependency model,
adding the printer doesn't break something else. Want KStars, a desktop
planetarium? No sweat. Click on it, and it's yours. GIMP? Sure. Click and run.

But those are all free software. Click-N-Run mixes proprietary software into the
same aisles. If you want Marble Blast, that'll be $9.95 US. There's also an annual
subscription fee. What that fee buys is something you've never had with
Microsoft or Apple: a real relationship with your OS supplier.

The old software industry model was all about manufacturing. You make a
product, release it to the supply chain and measure success by quarterly sales
results. If you have any kind of a relationship with the final customer, it's
remote and indirect. If you seek a real relationship, it isn't always a mutual or
trusting one. Mostly you want to make sure the customer isn't using a “pirated”
copy of your product.

With Click-N-Run, the relationship goes both ways. And if it's a trusting
relationship, Lindows.com can intermediate with the makers of the free and
proprietary software it supplies. Rather than saying “How did version 1.04 do
with high-income East Coast customers?” they can say “How many people
download software in the games category?” Or, “How many are downloading
GIMP plugins?” If 10,000 people download AbiWord and it becomes clear that a
significant number of them want AbiWord to add a feature, maybe
Lindows.com or one of its partners will fund development of that feature, even
though they won't make money on the program itself.

My point is with Click-N-Run, Lindows.com has the means in place to become
the most customer-responsive software company in the world, to do it in a way
that finally makes software easy for the customer and helps everybody win.

How close have they come to some ideal here? Lindows.com also introduced a
new $799 US laptop at the show that only weighs 2.9 pounds. One of the
attendees called it “a sysadmin's PDA”, which it is. But my six-year-old kid also
fell in love with it. He's a reader now and figured out Click-N-Run in about ten
seconds. Then he downloaded a bunch of games and played them on the train
all the way home. We have three platforms running in our household. Guess
which one the kid likes best now?

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Re-energizing the Stunted PC Revolution

Michael L. Robertson

Issue #110, June 2003

Getting Linux into stores is a dog fight every step of the way.

We're in the midst of a stunted PC revolution. I'm sure some would challenge
this characterization given the enormous impact the PC has had on how we
communicate, transact and entertain. But as I look around, I wonder why I
don't see more computers in more places. Why doesn't every student have a
computer? Why don't five-year-olds get their own computers the same as they
get bicycles? Why doesn't every hotel room, conference room, school room and
bedroom have a computer? Why do only 70% of Americans have access to PCs?
The big answer, of course, is cost. PCs are too expensive.

For many consumers, the most expensive component of desktop computing is
not the cost of the machine, but the price of the software. The average PC sells
for $700 US and is dropping by more than a hundred dollars each year—and
that's the average. Many people pay much less. But software has not shown the
radical price decreases that hardware has, in spite of the near-zero
reproduction costs of software. The lack of meaningful competition has allowed
one company to operate with 85% gross margins, which is great for their
shareholders but raises the cost of computing by billions of dollars and
prevents the full benefit of the PC from reaching all corners of our society.
Antitrust litigation and government programs have attempted to throttle the
costs and close the digital divide with little results.

Desktop Linux is going to be the force that makes software affordable and
energizes the PC business into the next wave, which will make the last wave—
the proliferation of the graphical user interface—seem tame. Software prices
will decline radically. Instead of eating up the majority of a computing budget,
software should consume a much smaller portion, about what you'd pay for a
hard disk and RAM.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Several challenges remain to be met before desktop Linux can have a
significant impact on software costs, and most of these challenges are not
technical. When I have a chance to put users on well-configured LindowsOS
machines with Netscape, StarOffice and KDE, their typical reaction is one of
shock. They're shocked that Linux can perform ably on the desktop. There's still
some work to be done to bring together an easy-to-use OS and wide-ranging
applications that together make a capable end-user experience. But the
LindowsOS Click-N-Run system, I believe, is filling that void.

The nontechnical areas are where Linux needs to see growth before we'll
witness widespread consumer adoption. And the challenge here is that the
entrenched monopolist's war chest ensures a dog fight as every step of the
essential retail ecosystem is built. It's challenging to recruit OEMs to build Linux
computers when their number-one profit determiner is their existing economic
relationship with the aforementioned monopolist. More than one of the top ten
OEM and chip companies have said they cannot do desktop Linux until they
“clear” it first, and they don't mean clear it with their internal management.
Once you've got the hardware vendors on board, securing a retailer to carry the
product is the next critical step. Many have questions about demand, sales
training and customer support, but those questions are answered favorably
once the cash register starts ringing.

If on-line sales of desktop Linux at outlets like Walmart.com and Tigerdirect are
any indication, there's strong pent-up demand, which means the early retail
adopters especially will see strong customer sales. The Brick, Canada's largest
electronics retailer, has begun stocking computers with Linux pre-installed in
more than 50 of their outlets. This is a dramatic development because it's the
first time we've seen choice on computer store shelves in 15 years.

With the retail ecosystem required to bring desktop Linux to the masses
showing promising developments, the final hurdle is education. Most PC
consumers have known only Microsoft. They speak only Microsoft's language of
computing. Microsoft even has attempted to rewrite history by positioning
themselves as the innovator and owner of even basic terms like “windows”.
What's undeniable is that Microsoft file formats and protocols are the de facto
standards, and all desktop products must interact with them seamlessly.
Desktop Linux products today do a surprisingly great job of this, but consumers
don't know about it. It's here where much work remains to be done.

Conferences, evangelists, training classes, stocked Linux aisles in stores, “Lin”
labeling alongside “Mac” and “Win” on peripherals and much more are all
needed to accelerate the education process. Ultimately, the cost advantage of
Linux-based desktops will drive adoption in business, homes and schools, but
education will dictate the growth rate. I look forward to the day when we see

consumers benefiting from affordable Linux software, because we will see
computers positively affecting our lives far beyond where we're at today. It's
coming, but if you encourage a friend to try desktop Linux, we'll get there much
sooner.

email: cheryl@lindows.com

Michael L. Robertson is the founder and chief executive officer of Lindows.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cheryl@lindows.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Sharp Zaurus SL-C700

Guylhem Aznar

Issue #110, June 2003

The audiophile will enjoy the excellent sound output; the typist will find the
keyboard pleasurable for a device so tiny; and the graphics fan will be seduced
by the crystal clear screen.

After the success of the Zaurus SL-5500 and the SL-5600, which was a
revamped SL-5500 featuring a faster CPU, a better battery and a microphone,
many people expected the next Zaurus would be as innovative as the SL-5500
was when it was first introduced. The Zaurus SL-C700 seems to satisfy this
expectation.

The SL-C700 device is smaller than the previous ones and feels much more
polished. When I received it, my fiancée immediately wanted to play with it,
though she hadn't found the older ones very attractive. The SL-C700, however,
comes with some disadvantages, which easily are explained by the lack of
official support for it from Sharp outside Japan. Its range of use is quite
impaired by the lack of support.

Specifications

Featuring an Intel XScale PXA 250 400MHz processor, 64MB of Flash, 32MB of
RAM, a 65,536 color 640 × 480 VGA screen, an IrDA port, a USB port, both a
CompactFlash and a MMC-SD port, a stereo audio jack, a jogdial-like wheel, a
comfortable keyboard and a screen that can move between the traditional
computer-style landscape mode and the traditional PDA-style language mode,
this is the most-advanced PDA currently available.

The audiophile will enjoy the excellent sound output; the typist will find the
keyboard pleasurable for a device so tiny; and the graphics fan will be seduced
by the crystal-clear screen. Personally, I was much more impressed by the soft
and luxurious feeling of the gray case. Although the earlier devices felt a bit like
plastic toys, this one proclaims its style with its appearance. The inclusion of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

LEDs on the left side of the hinge for quick access to battery charge and e-mail
status, plus a convenient wheel with OK and Cancel buttons on the side of the
machine, showcase the user-friendly design.

One missing feature may be an included microphone. Due to the poor quality
of typical PDA microphones and the availability of hands-free earbuds and
microphones, this is not a real issue. However, Sharp has listened to customer
feedback and did not forget to include an internal speaker. It may not seem
natural to include a speaker without also providing a microphone, but its
presence allows the SL-C700 to communicate directly to its user through
customized tones when an e-mail is received, when the device is powered on or
for alarms.

Ordering

The SL-C700 is officially available only in Japan. Dynamism.com, though, sells
the device worldwide for $699 US, plus custom duties. Because it is a big
success in Japan, where it is always back-ordered, expect long delays before
receiving one. It took two months to have my order processed, and the FedEx
parcel arrived after I was no longer expecting it.

Dynamism.com hired a coder well known in the Zaurus community to localize
the whole device to English. After the default Japanese applications had been
removed, I couldn't spot a single Japanese word except in the Favorites
bookmarks. Even with full-English support, two dangerous keys featuring
Japanese letters stand between Fn and space. If you press them, you are put
into Japanese mode. The English fonts used prevent the application from
displaying Japanese, though, so only little squares underlined in red by the
Japanese on-the-fly spell checker appear. It took me some time to realize these
keys had to be pressed again until an A appeared in the titlebar. When in
Japanese input mode, the letter A is replaced by a Japanese character.

First Impressions

The keyboard on the SL-C700 has keys that look big and soft, but a disturbing
beep accompanies every key press. The beep can be disabled with a simple
click on the audio icon on the taskbar, which brings up the Audio Setting menu.
Then, the keys emit soft clicks with each key press, much more discreet than
the loud beep.

The quality of the SL-C700 screen is impressive; I had never seen such a screen
before. The picture is so sharp you cannot see any individual pixels. The colors
and the display are so bright you can use the device outdoors with the
backlight on. The SL-5x00 series screens were impressive—much better than
the IPAQ, for example—but could not compete with the most recent Sony Clié

LCD screens. The SL-C700 screen outperforms the competition and will bring
disappointment to previously proud Clié owners.

It takes four minutes to boot the first time the SL-C700 is powered up. During
boot up, the SL-C700 told me it needed power on a pop-up window. I found a
matchbox-sized charger in the box, with a Japanese/American plug. With a plug
adapter, it worked like a charm in the European 230V output, even if it was
labeled as only 100V. Dynamism.com comments that no power adapter is
needed. The small size of the charger is a big plus; it makes the short battery
life, around three hours, less important because it can be carried everywhere.

Logging In

When the boot is finally over, the setup screen welcomes you. After calibrating
the screen sensors with five clicks, you must enter the local date, time and time
zone. New York is included by default, along with Tokyo and other important
cities.

Figure 1. The launcher features big icons.

Next, the default launcher pops up. Many applications are installed by default. I
tried the personal information manager (PIM) first. I was disappointed by the
small font used in the datebook and address book until I realized this font is
used in every other application. Comparing the screen in front of me to the
Japanese user manual screenshots, I realized it was smaller than what it should
have been. An e-mail to Dynamism.com technical support confirmed that the
English localization of the device had the unexpected side effect of
implementing a different font by default. It has been reported to
Dynamism.com, so the devices now should ship with a normal font.

Another problem is the strange alphabetical ordering in the address book—A,
Ka, Sa and so on. This is Japanese alphabetical order, which is not exactly suited
for English speakers. Another problem is the lack of XML support for former
SL-5x00 owners. Someone at Sharp must have had the clever idea of removing
the industry-standard XML format in favor of an obscure binary data format,
where data is stored in ~/Applications/dtm with strange names. Personally, I
liked the old ~/Applications/Datebook and ~/Applications/Addressbook, with
XML files that could be imported or exported into other applications easily.

Figure 2. The datebook is not too handy.

I installed the original SL-5x00 Addressbook, which required only putting the
addressbook.xml file in ~/Applications/Addressbook. For some reason, the
SL-5x00 series datebook is not compatible with the SL-C700—it displays only a
line instead of the meetings scheduled. So I decided to go with Korganiser
embedded, which uses the same format of the award-winning desktop
software. I simply put the addressbook.xml file and the calendar on a
CompactFlash card and copied them to the Zaurus.

Even with my best efforts over several days of attempts augmented by forum
support, I did not come close to having the Zaurus syncing to either Windows
or Linux. The desktop setup is a mystical adventure I may try again when I have
more time or when an English user manual is available.

The Office Suite

HancomWord and HancomSheet, the Zaurus' word processor and spreadsheet,
were interesting on the SL-5x00. They have matured into fast, easy-to-use and
professional software on the SL-C700, able to read and save Microsoft files
without any problem. Although the import may be slow sometimes, having the
documents available everywhere is a pleasure.

The big 640 × 480 screen of the SL-C700 provides a true interface to the user.
The screen rotation between 640 × 480 landscape mode and 480 × 640 portrait
mode is supported perfectly. It also enables an editing session to take
advantage of the wider screen and the keyboard, as well as a quick visualization
of the data using a taller display and a simple press of the wheel.

Getting on the Net

Configuring the internet connection is a kid's game. Being the lucky owner of a
home wireless network, I had only to go to the network setting application, give
a title to my connection, type my encryption key and select auto (dhcp) mode, a
mode where IP addresses are assigned automatically. Plugging in a wireless
CompactFlash card presented a globe-like icon with a big red cross on it.
Clicking this icon showed me a list of available connections, where I chose the
wireless connection I had set up and was connected. The list of connections
means the SL-C700 is able to move from one network to another without any
trouble—a necessary feature for a mobility device.

Both the Netfront browser and the Qtopia mail client are present on the SL-
C700. They once again outperform their SL-5x00 equivalents. Although the
Opera browser was not able to display every web site on the tiny SL-5x00
screen, Netfront is perfectly compatible with every web site I tried.

If the text is too small or too large, the Fn-3 and Fn-4 shortcuts allow the user to
resize the display dynamically. The Fn-1 and Fn-2 shortcuts complete this
customization with a brightness increase or decrease, which is useful when the
ambient light changes.

Tabs allow multiple web sites to be opened at the same time. The browser is
easy to use with self-evident menu items and icons and few configurable
options. This ease is welcome as the only user manual is in Japanese.

The e-mail application also is easy to configure and use. I had to type only my
POP server, user name, password and outgoing mail server to receive e-mail on
the Zaurus. I immediately was able to reply off-line. Mails too big to be stored
reasonably are not downloaded. It still is possible to retrieve them, but each
message requires manual confirmation. Once again this is a useful feature to
prevent the PDA memory from becoming full of junk mail and useless
attachments.

Figure 3. Excellent e-mail support is a big plus for the SL-C700.

The Multimedia Suite

Both an audio player and a video player are present on the SL-C700. They are
completed by a picture viewer and an audio recorder. The audio player plays
MP3 files perfectly, keeping a playlist for the user. The sound output is
excellent, and the user interface for the audio player is intuitive. A volume
control and a randomize function allow the SL-C700 to be used as a digital
jukebox. The audio player is completed by a clever display-off button that turns
off the whole screen, saving battery usage to prolong the musical experience.

In the case of the picture viewer, a list of the digital pictures I had on my
CompactFlash card was presented with thumbnails. I could then click on each
thumbnail to see the pictures individually or start a slideshow to use the SL-
C700 as a digital picture viewer. My fiancée was impressed by the quality of the
pictures we took on New Year's Eve on such a small display. They were crisp
and bright, with such beautiful colors it was hard to believe we were viewing
them on a PDA.

I do not like carrying a laptop with me when I am traveling, which can be
annoying when the on-flight movie is bad. But next time I take a long flight, I
will not envy the big, portable DVD player the person sitting next to me has.
Saving a DivX file to a 256MB CompactFlash disk, then watching it on my PDA,
however, certainly will make my flight neighbor jealous. Thanks to the Doctor Z
video player, it is possible to enjoy a high-quality playback without frame drop if
the movie has been recoded with some settings regarding the supported DivX
codec, the SL-C700 screen and supported frame rate.

Java

Another interesting feature of the SL-C700 is the complete Java support. I
always am looking for more knowledge of the sky and galaxies, so sky maps are
the first applications I install. I went to the Solun web site at
www.piecafe.demon.co.uk and downloaded the Java version, designed for the
SL-5500. It worked like a charm on the SL-C700, after some minor tweaks to use
the 640 × 480 resolution. The high resolution allows comfortable use, even if
the lack of memory quickly reminds you the SL-C700 is not perfect.

Figure 4. Java applications take advantage of the big screen.

Drawbacks

After the honeymoon with the new toy, I realized the SL-C700 was not without
fault. The first problem is the resolution tweaking. Although using a different
processor from the one the SL-5x00 uses, every SL-5x00 application should
work fine on the SL-C700. However, some have been coded using fixed-screen
sizes, which cause them not to scale well on a bigger display. To avoid this
problem, Sharp introduced a low resolution (240 × 320) portrait mode to
emulate the SL-5x00 screen better. It is active by default, however, and the
transition between high resolution and low resolution takes four seconds,
which seems like forever if you need the application at that moment.

The Doctor Z video player works fine and officially is SL-C700-compatible. The
SL-C700 also comes with excellent e-mail support. I tried the free SL-5x00
applications, and most of them work fine even if the high resolution mode is

http://www.piecafe.demon.co.uk
https://secure2.linuxjournal.com/ljarchive/LJ/110/6654f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6654f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6654f4.large.jpg

selected. It takes only a long click on the application icon then selecting/
deselecting the run-in compatibility mode icon to give it a try.

Another annoying problem is the lack of memory. 64MB of Flash means 64MB
of storage space, where 30MB are left for the user. Although 32MB may seem a
lot for a PDA, Qtopia is memory hungry, which does not leave a lot for the user.
When I run the audio player and a command line, only 600K are left. Even
worse, only 4MB of memory are free after a clean boot up, which means there
is little room left for the applications to run. I had many errors due to the lack
of available memory when using Java applications. The device became sluggish
until a screen suddenly appeared and asked me to stop some applications.

A serious problem my unit had was the SD port; for some reason, inserting an
SD card resulted in a complete lock until the card was removed, when the
traditional four-minute reboot takes over. I had to send it back to
Dynamism.com.

I also could not find any cases or accessories for the SL-C700. In Japan, some
accessories are starting to be made available, but it is hard to order them on-
line when you do not speak Japanese.

I must admit that even with these problems, I miss my SL-C700. The default PIM
suite is not really usable, but the multimedia suite, the office suite and the
internet suite were more than what I needed to be happy with my PDA. Most of
the problems I experienced are explained easily by the lack of official support in
English. The lack of XML support and SL-5x00 backward compatibility in the PIM
is a bigger issue, because it certainly cannot be solved by official support.

With some help found on the SL-C700 forums on externe.net/zaurus/forum, I
will start using the SL-C700 on a daily basis when it comes back. It will
completely replace my former PDA, the Zaurus SL-5500, when I can run a good
PIM suite that syncs to the desktop computer.

Product Information

email: g@7un.org

Guylhem Aznar is the coordinator of the LDP (www.tldp.org). In real life, he is a
consultant, a sixth-year medical student and is preparing a PhD in Computer
Science. With the little time left, he enjoys playing with his Zaurus.

Archive Index Issue Table of Contents

 Advanced search

http://externe.net/zaurus/forum
https://secure2.linuxjournal.com/ljarchive/LJ/110/6654s1.html
mailto:g@7un.org
http://www.tldp.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

SCO Linux 4

Steve R. Hastings

Issue #110, June 2003

SCO Linux 4 provides the bare bones of a high-availability clustering solution.

SCO Linux 4 is a server operating system intended for the same market
segment as Red Hat Enterprise Linux. SCO Linux is based on UnitedLinux, a
common base Linux distribution put together by four companies: SCO Group,
SuSE, Conectiva and Turbolinux.

UnitedLinux has embraced all the major Linux standards, including the
filesystem hierarchy standard (FHS), Linux standard base (LSB) and Open18N
internationalization. On top of this stable foundation, each partner in
UnitedLinux can ship extra features or customizations. For the most part,
though, it should be easy to move from one version of UnitedLinux to another.

UnitedLinux clearly is intended to run on servers rather than on workstations. It
uses the Linux 2.4.19 kernel with the O(1) scheduler patch applied, and it has
server features enabled, including large memory, IPv6, logical volume
management (LVM) and enterprise volume management system (EVMS).

Although UnitedLinux supports the major server architectures—x86, IA-64 or
Itanium, AMD's x86-64 and IBM's zSeries, iSeries and pSeries—SCO Linux 4
currently supports only IA-32. SCO has promised IA-4 support in the near
future. SuSE Linux Enterprise Server 8, also based on UnitedLinux, offers x86,
IA-64 and IBM zSeries, iSeries and pSeries support.

Installing

SCO Linux 4 is distributed on three CDs. The first is the installer CD, and it also
contains SCO-specific packages to install. The other two CDs are the standard
CDs for UnitedLinux 1.0. They provide the common core of UnitedLinux, and
any Linux distribution based on UnitedLinux 1.0 includes them.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The installer is a rebadged YaST2 installer from SuSE. It correctly detected most
of the hardware in my test system and set it up with sensible defaults. It
partitioned my disk and set up ReiserFS on the main partition.

Figure 1. YaST2 installer, rebadged for UnitedLinux. The SuSE lizard remains.

For the most part, the installer worked well and the installation went smoothly.
There were a few rough edges, but nothing an experienced Linux user will have
trouble handling. For example, when I tried the GNOME desktop, I received an
error message because the hostname wasn't in /etc/hosts. When I tried the KDE
desktop, an error message from the sound server came up because the driver
module for the sound card was not loaded. Someone new to Linux probably
will need to contact SCO support to sort out a few things.

The packages available for installation are mostly server-oriented. It is possible
to install packages from SuSE if something you want is missing. To test this, I
installed the SuSE 8.0 package for Stella, an emulator for the Atari 2600 game
system. It worked perfectly, and now I can play old Atari games on my
enterprise server.

Configuring

It's possible to configure a SCO Linux 4 system using SuSE's YaST2, either
character-based or GUI, but the recommended and supported way is to use
Webmin. Webmin is a web-based front end for system administration that
makes many tasks as easy as clicking buttons on a web page. Also included is
Webmin's companion system, Usermin, a similar system that lets users

https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f1.large.jpg

configure their own accounts. Webmin and Usermin can be run locally or from
any computer that can access the web server on the SCO Linux 4 system.

Many services are included, but few are enabled by default. Using Webmin, it's
easy to start up only the services you need or set them to start up on particular
init levels.

Running

When you log in with KDE 3, you see a nice desktop, ready to go. Icons are set
on your desktop for Webmin and Usermin, and the KDE panel has a selection of
useful program launchers.

Figure 2. The KDE desktop, with a Webmin session in Konqueror.

Not so on the GNOME 2 desktop; it is barren, with few launchers to be found.
UnitedLinux includes only the minimum core of GNOME 2.0—even GNOME
Terminal is missing. The GNOME 2 support includes everything you need to run
GNOME 2 applications under KDE or to launch KDE applications from the
GNOME desktop. But if you actually want to work in the GNOME 2
environment, plan on spending some extra time installing missing pieces of
GNOME and setting up a usable desktop.

DocView is a slick web interface that uses ht://Dig to put all the system
documentation at your fingertips. You get man pages, GNU info pages,
HOWTOs, Perl documentation and KDE documentation, all nicely browseable
and searchable. GNOME, Python and other subjects are searchable but not
included in the table of contents for browsing. To add them you would need to
edit DocView files in /usr/lib or set up your own documentation pages.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f3.large.jpg

Figure 3. DocView, a Slick Web Browser Interface to Documentation

Basic development tools are included, and they are up to date. GCC/g++ 3.2,
Python 2.2.1, Perl 5.8.0 and gdb 5.2.1 are all included, but integrated
development environments, such as KDevelop, Anjuta or IDLE, are not.
However, Glade 1.1.1 for GNOME 2.x is included.

Services

Both sendmail 8.12.6 and postfix 1.1.11 are included. Apache 1.3.26 (rather
than 2.x) is included with all the usual modules. Apache works right out of the
box, serving up a “Hey, it worked!” page with a handful of useful links. Both Sun
and IBM Java are present, along with JServe and Tomcat. Samba 2.2.5 and
OpenLDAP 2.1.4 are included, along with pam_ldap and other support libraries.
The Squid 2.4 caching proxy server also is provided. Tape backup is handled by
Amanda 2.4.2, which allows you to use one server with a big tape drive to back
up many systems.

SCO Linux 4 also provides the bare bones of a high-availability clustering
solution: packages for Linux Virtual Server, DRBD, Heartbeat and Mon. Very
little documentation about these services is available, either installed on your
system or on the SCO web site. The SCO web site, under its Knowledge Center
heading, has one technical article on Heartbeat that is helpful, but there is
nothing on LVS, DRBD or Mon. The Red Hat web site contains much more
documentation on high availability than this, and SCO Linux 4 has no equivalent
of the Red Hat Cluster Manager.

https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731f3.large.jpg

SCO also includes their sysinfo tool. It's a script in /etc that looks all over the
system, pulls out a lot of useful information and builds a web page with the
results. Anyone supporting a large number of servers will like this feature.

Support

SCO makes support information available on their web site. Most of it requires
you to log in before you can access it. Unfortunately, there isn't much
information there yet, and what is there is organized in a confusing manner.
For instance, a page for Security Advisories (www.sco.com/support/security)
does not list any security advisories for SCO Linux 4. All information about SCO
Linux 4 is in the Support Knowledge Center. At press time, there are 64
technical articles covering SCO Linux 4; 56 are notices of new packages (security
patches or upgrades), four are bug information articles and four are general
information articles. The general information articles include the Heartbeat
article, an article on setting up Squid, how to allow root to log in remotely and
where to get System V compatibility libraries.

The UnitedLinux installer can be automated with an XML options file. It also can
import configuration files from Red Hat's Kickstart and convert them to the
UnitedLinux XML format. There is no documentation about these features,
however, either on the SCO web site or on the system. After I inquired about
this, SCO technical support sent me a URL to a page on the SuSE web site that
documents this information.

SCO's phone support was good. When I called SCO technical support, the
people I spoke with were able to answer my questions quickly. They also
followed up by e-mail to make sure my problems were solved. SCO has
promised to support all releases of SCO Linux for a minimum of two years.

Updates are handled with the Advanced Package Tool (APT) system. APT
originally was developed for the Debian GNU/Linux distribution, but Conectiva
ported it to work with RPM packages. Once you have registered with SCO, you
can update all packages on your system to the latest with one command, or
you can update only specific packages. If you update a package that depends
on other packages, APT updates the other packages as well, automatically. APT
can get the packages from SCO's servers, using the Internet or from a Service
Pack CD.

SCO's upgrade policy states you are not required to upgrade any packages if
you don't want to do so. If you are calling support with a problem, though, they
may tell you to upgrade some packages as the solution to the problem.

http://www.sco.com/support/security

A Security Problem

During this review, SCO did not make an important security update available
quickly, although other distributions did. On March 3, 2003, the CERT
Coordination Center published a remote root compromise in sendmail,
reported by Internet Security Systems. Red Hat and SuSE had patches available
the same day as the CERT announcement, but SCO released their patch 11 days
later. This left the phone support person in the unenviable position of having to
tell me that no update was available. He did, however, send an RPM to me for
testing. This RPM turned out to be the same one that was ultimately released a
week later. It is surprising that SCO would take so long to release a major
security patch to sendmail.

In the meantime, I downloaded the SuSE RPM for sendmail and tried it out; it
installed with no problems. If the SCO phone support person had not been able
to get the RPM to me early, I could have installed the SuSE RPM as a temporary
fix.

Conclusion

SCO Linux 4 is licensed on a per-server basis, with four levels of support: base
for $599, classic for $699, business for $1,249 and enterprise for $2,199. This
price structure is similar to Red Hat Advanced Server's, but it is slightly less
expensive at each price level. (At press time, Red Hat announced a lower server
price point: Red Hat Enterprise Linux ES Base Edition is $349.)

UnitedLinux 1.0, upon which SCO Linux 4 is based, has some rough edges. SCO
hasn't smoothed them out yet, and their available documentation isn't much
better than you can get by surfing the Internet. On the other hand, with
Webmin and APT, it should be easy to keep your servers humming once you do
have them set up. Except for that one scary security situation, the tech support
is good.

Product Information

Why 11 Days to Fix a Remote Root Vulnerability?

email: steve@hastings.org

https://secure2.linuxjournal.com/ljarchive/LJ/110/6731s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/6731s2.html
mailto:steve@hastings.org

Steve R. Hastings first used UNIX on actual paper teletypes. He enjoys bicycling
with his wife, listening to music, petting his cat and making his Linux computers
do new things.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

C++ Templates: The Complete Guide

Michael Baxter

Issue #110, June 2003

Book Review: C++ Templates: The Complete Guide by David Vandevoorde and Nicolai M.

Josuttis

Boston, Pearson Education, Inc., 2003

ISBN: 0-201-73484-2

$54.99 US (hardcover)

This book is a user's manual for the future of C++ programming. C++ is going
through a dramatic metamorphosis, moving far away from C-like pointer
manipulation. With the introduction of the standard template library (STL), part
of the C++ standard library, low-level coding for data structures and containers
is no longer necessary. Instead, efficient generic tools already are available for
your code.

One important construct underlying all the changes in C++ is templates, which
introduce parameterized types for functions. This new book opens the door to
understanding how templates work, with examples throughout.

Part I introduces template basics in seven chapters that extol the virtues of
static polymorphism, which allows compile-time type checking that would not
be possible at runtime. The authors explain the differences between function

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

templates and class templates, how to use nontype parameters in templates
and how to avoid numerous problem areas.

Part II explains templates in-depth and provides information about various
kinds of arguments in template code, friend functions, the importance and
control of names and how instantiation is done. It also covers how template
arguments are deduced and how to decide between generic and specialized
code.

The drama really unfolds in Part III. You even may catch yourself thinking,
“Whoa, this is C++? I didn't know it could do all this.” The tone is set by a
discussion of dynamic vs. static polymorphism. Dynamic polymorphism is the
kind generally associated with C++--inheritance with dynamic dispatch at
runtime. Templates are a form of static polymorphism, and compile time only
seems to be limiting. But this turns out not to be the case. For example, C++
code can be constructed to moderate the behavior of classes by using
templatized traits and policy classes. And, templates can be used with
inheritance for applications such as parameterized virtuality, which combines
the best of two forms of polymorphism.

Metaprogramming, normally associated with Lisp is one of the most powerful
uses of templates. Templates actually can be used to construct program-writing
programs, or code generators. After the unveiling of capabilities in Part III, Part
IV offers a reprise on advanced applications. A highlight is being able to do type
classification with templates. Templates allow you to use the type algebra in C+
+ directly for your own applications, a key to behavioral patterns.

Templates have been used to construct several useful C++ libraries, including
the vast collection at boost.org. Both authors are experienced C++
programmers and are closely associated with the C++ Standards Committee.
Vandevoorde is a cofounder with of the comp.lang.c++.moderated newsgroup,
and Josuttis has written extensively on C++, including The C++ Standard Library.

—Michael Baxter

email: mab@cruzio.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://boost.org
mailto:mab@cruzio.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #110, June 2003

Readers sound off.

Happy Chinese New Year, Tux

Thought you might be interested in this picture I took across from the main
train station in Taipei, Taiwan. It is a very large Linux penguin, dressed up for
Chinese New Year. I just finished up with Apricot (the Asian networking
conference), and Linux had a large presence in the IPv6 appliances on display,
as well as the research being presented. The research lab I work in has many
Linux systems. The software engineers do most of their work on Linux and
FreeBSD.

—Van Emery

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Debit on the Left, Credit on the Right

I just read the article “Linux for a Small Business” by Gary Maxwell [LJ, April
2003]. He states that when you pay for a book, you debit your cash account and
credit your expense account. I believe it should be the other way around. In
accounting, debit refers to the left side of a T-account and credit refers to the
right side of a T-account. The words are of Latin derivation meaning left and
right. They don't mean decrease or increase. Depending on the type of account,
a debit can either increase it or decrease it. The same applies to credits. I think
this is probably the source of most non-accountants' confusion about double-
entry accounting.

—Kathy

Network Desktop Advice

Thanks for the great article listing rdesktop, Marcel [Cooking with Linux, LJ, April
2003]. In a heterogeneous environment, rdesktop works nicely for getting to
Windows machines. I have also found tsclient (www.gnomepro.com/tsclient), a
GNOME 2 front end to rdesktop that looks and acts exactly like the Windows
Terminal Services client. For those of us who must work in this environment, it
helps things a little bit.

—Jeremy

http://www.gnomepro.com/tsclient

MST Helps Brazil's Poor

To Jon “maddog” Hall: I am Brazilian and would like to let you know that I agree
with your response to Bruno Trevisan's letter about the “Landless Workers'
Movement”, Movimento dos Trabalhadores Rurais Sem Terra (MST) [LJ,
February 2003]. I sincerely thank you for bringing out the facts. MST is
addressing the very basic needs of landless people in Brazil in a conscious,
organized and effective way. MST has shown results—tons of results. The land
issue in Brazil is a serious one, and Trevisan's statements show a total lack of
respect toward people in need of basic things, people in poverty, people that
die from hunger. Former President Cardoso never had his farm destroyed. The
Brazilian army was always securing his properties because of the lack of
response of local police. A few years ago, in the Brazilian state of Para, in the
Amazon region, the state police cowardly murdered dozens of rural workers. It
took a very long time to bring the police officers to trial. A few years ago, in the
state of S. Paulo, the state police invaded a prison and murdered 111 prisoners.
Again, it took a very long time to put the responsible ones on trial.

—Nuno Vasconcellos

“Wardialing” in 1979

The term wardialing was in use in 1979-80. It was used to describe either linear
or random dialing of phone numbers and keeping tabs on the modem carrier
detects (CDs) received. Wardialing also was used interchangeably to signify
using those numbers, getting the codes from the long-distance carriers, or if
you were lucky, a PBX connect to trunk calls and make party lines. Nothing too
intelligent, just brute force. Not that I ever did any of that. I think the term war
was that you were at “war” with the phone company doing this. Think of it as
carpet bombing the telco switch. Eventually, you'll hit something. There were a
lot of turf wars like they have now, and essentially, the biggest “list” wins. The
movie Wargames (1983) had nothing to do with it whatsoever.

—Craig

GNOME 2 Drops Features of Version 1

I disagree strongly with your description of GNOME 2 as “an excellent choice for
first-time and nontechnical users” [“The GNOME 2 Desktop Environment”, LJ,
April 2003]. I used GNOME 1 and persuaded my wife to use it too, but when I
installed Red Hat 8 with GNOME 2 we found things had gone backward.

Under GNOME 1, with the Sawfish window manager, I set up all sorts of
keyboard shortcuts. This was reasonably easy. There was a decent keyboard
shortcuts tool, which allowed you to set the context (global, window, title) and

then set shortcuts like Alt-MOUSE3, etc., with a long list of commands to assign
them to. Now under GNOME 2, I find a very primitive “keyboard shortcuts
editor” that offers a much smaller number of predefined commands and does
not allow you to specify the context. Why adopt a worse new window manager
without offering the choice of keeping the old one?

We wanted to have some programs run on GNOME startup. I looked in the
menus for something like “startup”. It took ages: I finally found the required
functionality in a program that runs when you click on Extras-->Preferences--
>Sessions. Well hidden!

My wife found GNOME 2 unusable and unfriendly. I found it shockingly weak on
everyday functionality, compared with GNOME 1. Overall, the point of a
desktop is to make the computer more usable, but I see no sign of any user-
sensitivity in the GNOME desktop. It feels like a half-baked programming
project, not a user-oriented functional tool.

—Dr Mark Alford

HTTP User-Agent in Mozilla

Gary Maxwell's article “Linux for a Small Business” [LJ, April 2003] is very useful
for an average desktop user like me. I'd like to add a small correction to his
statement that “Mozilla lacks a feature that Konqueror has: changeable user
agents.” In Mozilla 1.3 and later, the user can change User-Agent by changing
profiles.

—Hiroshi Iwatani

Ready to Make Movies

I would like to say thanks for some really inspiring and interesting stuff about
movies in Linux Journal. The January 2003 issue about Star Trek was excellent. I
would also like to give a special thanks to Robin Rowe, because he's actually the
reason I'm switching to Linux. The biggest problem as a 3-D animator is that
there are not enough 3-D applications for Linux. Currently, I'm using the free
Blender 3-D application, and I'm very impressed.

—Jesper Christensen

Robin Rowe replies: Thank you, and you may want to try Wings. That's free, too.
See www.linuxmovies.org for a list of more movie-related software.

http://www.linuxmovies.org

Linux Training?

It would be great if you had a training section in the magazine highlighting
where you can get free or paid training for the topics in that month's magazine.

—Mike Hjorleifsson

We Are Not Riffraff

In response to the letter “..and Loses Another” [Letters, LJ, April 2003] that
accuses LJ of containing “apologies for terrorists and other assorted anti-
American, third-world riffraff”, I don't believe the editorial team should worry
about losing another loser, but should rejoice that LJ does not encourage such
xenophobia. Linux provides an opportunity to rise above this type of
nationalism. Open-source software can help create a more equitable sharing of
knowledge and access to wealth, and this is a great thing. Linux is most
definitely a multinational effort in the best traditions of freedom and
democracy (a European invention). And yes, that operating system you use
every day includes contributions from the third world too.

—Ian, a citizen of the world

Life without LJ Is Pain

How dare you! I had canceled my subscription a few months ago, then what do
I find when I look at Linux Journal at my local Borders bookshop? I find
interesting, technically unrepentant articles. I find excellent design and a good
balance between news, discussion and facts. The cheek of it! I was shocked by
the current issue [April 2003], which I was forced to buy—a GNUstep
programming introduction, a brilliant inspiring GIMP tutorial, USB drivers, a
kernel cryptography overview, CMS chitchat, teasing screenshots of GNOME 2,
gossip on kernel patches for the SGI VISWS—and all on lovely glossy paper! You
do realise the pain you're putting me through knowing that I'm not subscribing
anymore! People I have spoken to were really inspired by your GIMP tutorial.
They couldn't wait to get back to their mice and keyboards to try it out. I think
that's the key really: to show people how powerful the tools they already have
are. “I didn't know you could do X with this Y I have here” is a nice feeling!

—Tariq

Don't Try to Mimic Another OS

I don't get why everyone wants Linux GUIs to look like Microsoft Windows. I've
supported Mac users and Windows users for years. It never fails to thoroughly
confuse Mac users on Windows systems when something almost works like on

their Mac, but not quite. Most users I've worked with had an easier transition
from one platform to another when the two had very little semblance to each
other.

—LT

Scribus Progress?

Are there any plans for an article or two on the state of desktop publishing
software and production on Linux? I'm in the middle of a small press startup,
and I'm hoping to be able to standardize on Linux. I've looked at software
packages like TeX, LaTeX, LyX and Scribus. None of them seem to be quite
ready for my needs, though Scribus is very close. I think you guys are probably
in a prime position to write articles on this subject, being already in the
publishing industry.

—Charles

Put maddog's Letter on the Web

I regularly pick up the Linux Journal, but in February I was unable to. Now
having picked up the March issue and seeing two letters about maddog's “I
believe” response and how inspirational it was, I would really like to see it. Is it
possible to post it on the web site?

—Chris Bruner

Yes: www.linuxjournal.com/article/6770—Ed.

Freedom Threatens Some Companies

I read with some concern your recent article on Koha [LJ, February 2003]. I
wondered what would happen to small- to medium-sized software companies
that currently produce competing library systems. No doubt these companies
have invested real money into developing these products and need some
return on their investment in order to survive. This led me to wonder about the
long-term effect of free software. Any software product that has to compete
with the equivalent open-source product must surely struggle to survive. This
means one open-source product will eventually dominate each market niche
leaving consumers with no choice. Presumably a lot of open-source products
are developed by charitable professional software developers during their free
time. Will the pool of professional developers shrink as there is little work
available other than charity work? Why should large organisations increase
their profit margins by significantly reducing the cost of software essential to

https://secure2.linuxjournal.com/ljarchive/LJ/000/6770.html

their organisation? Charity is fine for those who cannot afford to pay but
shouldn't be exploited by those who can.

—John

Richard Stallman covered many of the issues you raise in the 1985 GNU
Manifesto (www.gnu.org/gnu/manifesto.html), and they have been the subject
of intense community discussion ever since. That page, and a web search for
links to it, is a good way to catch up on the debate—Ed.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.gnu.org/gnu/manifesto.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UPFRONT

Various

Issue #110, June 2003

LJ Index, diff -u and more.

upFront

AeroMail

A good choice for a spartan web-based mail agent is AeroMail. It has no frills,
like address books, but it does allow you IMAP access to your mail server. It
sports folders for storing and classifying mail. You can reply, forward and
compose mail messages. All the important functions are present, but not a lot
else. Perfect for road warriors who use a regular mail client when they return.
Requires: web server; PHP, compiled with IMAP support; IMAP server.

—David A. Bandel

diff -u: What's New in Kernel Development

The FUSE (filesystem in user space) Project has reached version 1.0. One of the
basic ideas of UNIX is to provide tools that perform fundamental operations in
generic, interoperable ways. These tools typically work on streams of data
stored in the filesystem as files. But some tools, including SSH, FTP and
compression tools, interfere with this, because they either convert the files into
a difficult-to-use state or they interact with systems located elsewhere on a
network. Still other tools insist on providing all control internally to themselves,
so none of the basic UNIX tools are of any use. FUSE allows the user to layer the
appearance of a filesystem over any or all of these programs, so all operations
can be done as file manipulations, taking advantage of the great wealth of basic
tools available in UNIX.

The virtual memory (VM) subsystem in 2.4 now has some good documentation,
courtesy of Mel Gorman. Once upon a time, Linus Torvalds dropped an entirely
new VM subsystem into the Linux kernel, smack dab in the middle of a stable

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://the.cushman.net/projects/aeromail/index.php

release series. This was tremendously controversial among developers, one
reason being that Andrea Arcangeli, the author of the new code, provided
virtually no documentation of any kind. Mel put in six months of work, much
more than he originally thought would be necessary, resulting in a solid
explanation of the workings of the entire VM, along with specific commentary
on the source code itself.

The Kernel Bug Database has been documented extensively by its creator, John

Bradford. Intended as an improvement over the current Bugzilla database used
by a number of developers, the Kernel Bug Database rejects a generic
approach, providing features based on the specific needs of the Linux kernel,
such as the ability to search based on options in the .config file.

Dynamic kernel module support (DKMS) has come from a developer group at
Dell. A GPLed project, it aims to allow device driver source code to reside
anywhere on the filesystem, not only in the kernel source tree. This makes it
easier for vendors to release new versions of their drivers and for users to
recompile those drivers. As of March 2003, DKMS is 2.4-specific, and it doesn't
take account of some of the massive reworkings appearing in 2.5, especially
with the module code itself.

Several groups are working to implement IPSec for IPv6. The IPSec suite of
protocols presents a framework for providing privacy and authentication
support at the IP address layer, while IPv6 attempts to expand the number of
available IP addresses. Although IPv6 is not yet in widespread use, it is
important to continue to build the infrastructure to one day migrate away from
the ailing IPv4 standard. Kazunori Miyazawa, Kunihiro Ishiguro, Hideaki

Yoshifuji and Mitsuru Kanda recently joined forces to produce working IPv6
IPSec support in the 2.5 kernel tree.

—Zack Brown

Furball

Here's a fun game for the kids, but you can edit it and make it suitable for
anyone. It's a game to learn about others, with questions and more. Think of it
as a truth-or-dare game. Requires: web server, web browser, Python.

http://www.claws-and-paws.com/software

—David A. Bandel

LJ Index—June 2003

1. Forecasted global percentage increase in IT spending for 2003: 4
2. Server growth percentage forecast: on top of a 50%-plus growth rate in

enterprise servers in 2002, a 40% growth for Linux servers in 2003.
3. Forecasted 2003 percentage growth rate for Linux in Asia: 24
4. Forecasted 2003 percentage growth rate for Microsoft Windows in Asia: 6
5. IBM's claimed Linux revenue, in billions of dollars: 1
6. HP's claimed Linux revenue, in billions of dollars: 2
7. Damages in billions of dollars sought by SCO in a lawsuit against IBM for

disclosing trade secrets in SCO-licensed AIX source code: 1
8. Percentage cost-savings range experienced by Merrill Lynch since

deploying Linux on IBM mainframes: 40-50
9. Projected minimum yearly savings in millions of dollars for Merrill Lynch

by fully deploying its Linux-on-mainframe strategy: 100
10. Number of Linux boxes currently in production at Morgan Stanley: 400
11. Number of Linux boxes currently “in the pipeline” at Morgan Stanley: 300
12. Price/performance increase multiple Morgan Stanley experienced on six

new four-way Linux boxes: 13
13. Percentage improvement in cost experienced by Lehman Brothers with

Linux: 50
14. Percentage improvement in performance experienced by Lehman

Brothers with Linux: 20

15. Percentage bandwidth capacity of ordinary phone wire to households
currently utilized: 1

16. Percentage of IBM's servers currently sold that are Linux-driven: 15-20
17. Percentage annual growth in Linux users over the next few years,

predicted by Sun CEO Scott McNealy: 30

Sources

1,2: Aberdeen Group3,4: International Data Corp., in Economic Times5,6:
eWeek7: SCO8-14: Risk Waters Group15: Bob Frankston16: Jim Stallings, IBM17:
Associated Press

Mbrowse: www.kill-9.org/mbrowse/index.html

This is a nice, simple-to-use and easy-to-install management information base
(MIB) browser. Those of you who use Simple Network Management Protocol
(SNMP) know how easy it can make life. The Details tab provides information
about those MIBs you might not know a whole lot about or use often, so you
can interpret the information or make changes using the browser. Requires:
libgtk, libgdk, libgmodule, libglib, libdl, libXi, libXext, libX11, libm, libnetsnmp,
libwrap, glibc, libcrypto, libnsl.

—David A. Bandel

My Calendar: fuzzymonkey.org/newfuzzy/software

If you need only one calendar—not one for everyone, but one for yourself or
for the office or the Web—this program is extremely easy and quick to install.
And as long as the protected/ directory is protected, you don't need to worry

http://www.kill-9.org/mbrowse/index.html
http://fuzzymonkey.org/newfuzzy/software

about someone changing your appointments. This calendar also e-mails you
the next three days' appointments if you set up cron to run the e-mail script.
Requires: web server, Perl, cal, pscal (optional).

—David A. Bandel

ps-watcher: ps-watcher.sourceforge.net

If you need something to keep an eye on your process table and perform some
action based on said table, you need ps-watcher. Every day I used to have to
look for errant Netscape processes and kill them. Well, ps-watcher can do this
before the system comes to a crawl. You can base actions on percentage of
CPU time used and other parameters. Simply define the parameter in the
config file and set an action to take. You can log, kill, log and kill, and any of a
number of other actions. Requires: Perl, Perl modules Sys::Syslog,
File::Basename, Pod::Text, Config::IniFiles, Getopt::Long.

—David A. Bandel

QBrew: www.usermode.org/code.html

A virtual beer is great, but a real one is undeniably better. Well, why not go that
one step further and brew your own to your own tastes? This program comes
with a tutorial for brewing real, not virtual beer. When you find the best
combination of ingredients for a really hearty ale, pass the recipe on. Requires:
libSM, libICE, libXext, libX11, libqt-mt, libstdc++, libm, libgcc_s, glibc, libdl,
libfontconfig, libaudio, libXt, libpng, libz, libGL, libXmu, libX render, libXft,
libfreetype, libpthread, libexpat.

http://ps-watcher.sourceforge.net
http://www.usermode.org/code.html

—David A. Bandel

They Said It

Alas, 2003 will not be the year of the enterprise Linux desktop; however, expect
support from the large system vendors such as Dell, HP, IBM and Sun to be on
the increase for desktop Linux (from practically nothing in 2002), as they realize
that they can sell more Linux servers if there is a viable desktop Linux.

—Aberdeen Group

By 2007, we said one year ago, “No one will be fired for recommending Linux.”
Shortening our own timeline by four years, we suggest that an IT buyer might
already be fired today for failing to consider Linux. That's a small step but one
of Neil Armstrong caliber.

—eWeek

Linux is a large component of our five-year computing strategy. We are
investing and deploying it heavily in all areas of our Institutional Securities
business. It's currently being used for mission-critical applications in our Equity
and Fixed Income Divisions.

—Jeffrey M. Birnbaum, Morgan Stanley's global head of enterprise computing
for the Institutional Securities business

We're no longer locked into a development platform. If we were going to port
an application [to HP-UX], there would be some problems. Going with Linux, we
can run the application on commodity hardware—IBM, HP or Dell—and take
advantage of the benefits of the platform.

—Bridget O'Connor, Lehman Brothers

The other thing is continuing to enable all the platforms in the IBM family of
products. When you do that, then no matter where the customer interacts with
us, Linux is a part of this picture.

—Jim Stallings, IBM's Linux manager

Linux will not be very useful to ordinary people. It will be more useful to
companies like ours.

—Scott McNealy, CEO, Sun Microsystems

Lethal Linux

Future Combat Systems (FCS, www.darpa.mil/fcs) is a $4 billion Defense
Advanced Research Projects Agency (DARPA, www.darpa.mil) program with an
immodest purpose that its web site puts this way:

The FCS program will develop network-centric
concepts for a multi-mission combat system that will
be overwhelmingly lethal, strategically deployable, self-
sustaining and highly survivable in combat through the
use of an ensemble of manned and unmanned ground
and air platforms.

The Lead System Integrator (LSI) selected for the Army's FCS is The Boeing
Company's Science Applications International Corporation (SAIC,
www.saic.com), which is expected to field its results in the year 2010. The
selection announcement was made in March 2002. In November 2002, at a
Boeing C4ISR (Command, Control, Computers, Communications, Intelligence,
Surveillance and Reconnaissance) conference, a Boeing FAQ (www.boeing.com/
defense-space/ic/fcs/bia/faq_c4isr_conf.html) addressed the operating system
question:

Q: COMPUTERS—What operating system will FCS use?
Windows? VX Works? Lynxos? Linux? Other?

A: FCS C4ISR has selected the Linux OS.

—Doc Searls

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.darpa.mil/fcs
http://www.darpa.mil
http://www.saic.com
http://www.boeing.com/defense-space/ic/fcs/bia/faq_c4isr_conf.html
http://www.boeing.com/defense-space/ic/fcs/bia/faq_c4isr_conf.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

C++? Are You Crazy?

Don Marti

Issue #110, June 2003

Cool projects are using this big, complicated language. Maybe you should too.

About two years ago, programmer Dan Egnor posted to advogato.org with the
question, “Why don't C++ and free software mix?” He pointed out that freedom-
loving software developers tend to stay away from C++.

But, he added, although C++ is a big complicated language with “terrible pitfalls
and simple misfeatures”, it is standardized and offers good flexibility and
performance. And, he wrote, “its standard library includes the STL, which
knocks the socks off anything available in the C world for power, flexibility and
efficiency.”

Or, does C++, as many have argued, represent the worst of both worlds, an
infertile middle ground between the simplicity and control of C and the almost-
automatic everything of Perl and Python?

Today, though, it might be time for a second look at this much-maligned
language. For two big reasons books on standard C++, templates and all, are on
my to-read stack above the more tempting ones on the next great scripting
languages. First, the tools are good. The C++ support in the GNU Compiler
Collection (GCC) is being actively cleaned up, with binaries getting smaller and
version 3.2 offering a stable application binary interface (ABI) that will help with
deploying software written in C++.

Besides GCC, a lot of other good tools are available to help with C++, as Cal
Erickson points out on page 34. Cal does embedded development and that
article is in the Embedded section, but his development strategy—get as much
as possible working on your workstation first—means that the article will be
useful to any C++ programmer.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://advogato.org

Second, new or newly freed C++ projects, such as the Xerces XML parser
contributed by IBM, mean that your new C++ code can draw on a lot of already
tested, supported functionality. See John Dubchak's article on page 50 for an
example. As more corporations start sharing in-house code, corporate technical
preferences such as C++ start to be more important on the outside.

If you're looking for a place to apply your software development skills, Len
Kaplan has a great one—your local museum. On page 89 he covers the unique
challenges and rewards of creating applications for museum exhibits. And, you
might pick up some C++ and XML hints from that article, too.

Another school of thought favors doing object-oriented programming in C. For
an example of how that is happening in the kernel, see Greg Kroah-Hartman's
Driving Me Nuts column on page 28. Your brain is inside your head, so people
won't see the stretch marks on it from reading his code.

But speaking of brains, don't worry. We couldn't let the development issue slip
by without at least one regular C article, and you'll be happy to know that the
performance-critical parts of interpreting the brain waves of the test subject on
the cover are in C. Enjoy Sam Clanton's Matlab-to-C porting advice on page 56.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Advice, Gift of the Open Source Community

Heather Mead

Issue #110, June 2003

We sometimes may give newbies a hard time, but not everyone can know
everything.

Last month we talked about the do-it-yourself tenet of the open-source
philosophy. Closely linked to that one is this month's topic of discussion, advice.
One of the best aspects of the community is the willingness to share
experiences with one another, which can be especially gratifying if you are
undertaking a new project. Without a doubt, one of the most popular article
types on the Linux Journal web site—both most-read and most-submitted—is
the how-to article.

Early in 2003, Jay Docherty began a series of articles detailing the steps to take
when one decides to install Linux on a laptop. Indeed, if you want to run Linux
on a Dell or Compaq or other major-vendor laptop, you're going to have to put
it there yourself. His first article, “Advice for Buying a Linux-Compatible Laptop”
(www.linuxjournal.com/article/6684), offers some points to consider when
you're buying a new laptop on which you want to install Linux. In part 2,
“Setting Up a Base Linux Install on a Laptop” (www.linuxjournal.com/article/
6742), Jay explains how to install Debian Sid and compile a custom kernel for
your installation.

Alternatively, if you want to have a full Linux workstation but can't and don't
want to spend a bundle, take a look at Glenn Stone's article, “Roll Your Own
$450 Linux Box” (www.linuxjournal.com/article/6668). From the case to the
video card to the CD-RW drive, Glenn offers suggestions for quality inexpensive
hardware that will build a budget version of the Ultimate Linux Box. Of course,
our readers had comments and advice of their own, so be sure to catch their
postings at the end of the article.

Our most popular article so far this year has been Greg Kroah-Hartman's “Time
for Users to Start Testing 2.5” (www.linuxjournal.com/article/6740), in which

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6684.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6742.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6742.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6668.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6740.html

Greg asks you, our readers, to help him and the rest of the kernel team test the
development kernel. The comments quickly blossomed with questions and
advice on how to get 2.5 working, so look for more testing and bug reporting
help on the site as 2.6 draws closer.

Our web site maintains all of its articles, new and old; so if you do a little
exploring, you might come across an article outlining the process of “Setting Up
a VPN Gateway” (www.linuxjournal.com/article/4772). Duncan Napier explains
how to “install and run an IPSec-based VPN gateway with a firewall using a
single bootable Linux diskette distribution”. If you'd like to set up a secure
internet connection between your home system and your work LAN, this one
should help you do exactly that.

If you have some project advice or experience you would like to share with
others, perhaps saving them a few missteps along the way, send your ideas to
info@linuxjournal.com. New articles are posted on the web site every day.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/093/4772.html
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #110, June 2003

PRISMIQ MediaPlayer, Red Hat Enterprise Linux ES and WS, SnapGear PCI630
and more.

PRISMIQ MediaPlayer

The PRISMIQ MediaPlayer is a set-top device that plays and displays media files
from home computers, connects the TV/entertainment center to the Internet
and acts as a platform for broadband services. The PRISMIQ includes an NEC
uPD61130 32-bit MIPS microprocessor with an integrated MPEG decoder, 16MB
of Flash ROM and 64MB of SDRAM. Network interfaces include 10/100 Ethernet
on an RJ45 jack and a cardbus/PCMCIA slot for wireless. It currently supports
MPEG-1 and MPEG-2 video formats, the MP3 audio format and the JPEG, GIF
and PNG graphic formats. Output interfaces include one S-video, one
composite video, one S/PDIF and two RCA Audio (L/R Stereo). The MediaPlayer
is built on Linux 2.4 and comes with software for web browsing and an optional
wireless keyboard.

Contact PRISMIQ, 2121 South El Camino Real, 10th Floor, San Mateo, California
94403, 866-774-7647, sales@prizmiq.com, www.prismiq.com.

Red Hat Enterprise Linux ES and WS

Two new releases from Red Hat, both compatible with Red Hat Enterprise Linux
AS, formerly Red Hat Advanced Server, assist company-wide Linux installations.
Red Hat Enterprise Linux ES provides an OS for a range of entry-level and
departmental duties, including network, file, print, mail, Web and custom or
packaged business applications. It is designed for smaller systems with up to
two CPUs and 4GB of main memory, and it comes in Basic and Standard
Editions. Red Hat Enterprise Linux WS is an engineering desktop/workstation. It
is designed for use in client/server deployments, software development
environments and targeted ISV client applications. Also available in Basic and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@prizmiq.com
http://www.prismiq.com

Standard Editions, WS provides support for workstation/desktop systems with
up to two CPUs.

Contact Red Hat Software, 2600 Meridian Parkway, Durham, North Carolina
27713, 888-733-4281, www.redhat.com.

SnapGear PCI630

The SnapGear PCI630 is a VPN firewall PCI card that offloads all firewall and
VPN processing duties from the host computer to the card, allowing remote
management, high security and simplified installation. An isolated, stateful
firewall PCI device, the PCI630 provides onboard multi-VPN capabilities for
secure access and communication in a NIC PCI footprint. For use on servers
and desktops, the PCI630 includes 10/100 Ethernet connectivity, 4MB of Flash
memory and 16MB of RAM. It supports authentication up to 2,048-bit for RSA
key signatures, X.509 certificates in DER and PEM formats and multiple subnets,
without third-party client software or per-user licensing restrictions.

Contact SnapGear, Inc., 7984 South Welby Park Drive #101, West Jordan, Utah
84088, 801-282-8492, contact@snapgear.com, www.snapgear.com.

5070 PC/104 CPU

Octagon Systems has released the 5070 PC/104 CPU, an integrated, PC-
compatible, single-board computer (SBC) for thin-client and other network-
enabled applications. Utilizing a low power 5x86 class processor, the 5070 can
operate in temperatures from -40° to 85° C with little ventilation. It can be
expanded using the PC/104 or ISA connectors. The 5070 includes two
RS-232/422/485 serial ports, a 10/100 Base-T Ethernet port, two USB 1.1 ports,
FDD, HDD, back-drive protected parallel and keyboard ports, CompactFlash and
removable memory up to 2GB. SVGA CRTs and flat-panel displays are
supported. Fast-boot Phoenix BIOS provides for operation in less than six
seconds, and a boot image is stored in serial EPROM in case of CMOS battery
depletion.

Contact Octagon Systems Corporation, 6510 West 91st Avenue, Westminster,
Colorado 80031, 303-430-1500, sales1@octagonsystems.com,
www.octagonsystems.com.

Visual SlickEdit 8.0

Version 8.0 of the Visual SlickEdit code editor is now available from SlickEdit,
Inc. Visual SlickEdit 8.0 supplies a range of code editing tools that provide
language and encoding capabilities for a range of languages and platforms.
New for version 8.0 are directory-based projects, auto-updated distributed

http://www.redhat.com
mailto:contact@snapgear.com
http://www.snapgear.com
mailto:sales1@octagonsystems.com
http://www.octagonsystems.com

tagging, secure FTP (SFTP) and Section 508 accessibility for blind and vision-
impaired developers. A new three-way merge interface extends the DIFFzilla file
and directory tree differencing engine. Version 8.0 also provides increased
support and capabilities for coders using JBuilder, Java, GNU C/C++ and CVS. A
30-day free trial is available on the web site.

Contact SlickEdit, Inc., 3000 Aerial Center Parkway, Suite 120, Morrisville, North
Carolina 27560, 800-934-3348, www.slickedit.com.

Eventide VR778

The Eventide VR778 is a digital voice logging and archiving system, designed for
use in health and public safety environments. Able to work as a standalone
logger using a front-panel GUI or as a network server for PC workstations, the
VR778 provides fault-tolerant features, such as dual hot-swap power supplies,
fan assemblies and dual redundant hard disks. Anywhere from 8-160 analog
and 16-96 digital record channels can be mixed in one VR778. Variable
recording compression rates range from 13.3 to 16, 32 and 64Kbs. A mirrored
RAID 1 system with dual-120GB hard disks (380GB RAID 5 optional) can record
and store up to 19,800 channel hours at 13.3Kbs. DVD-RAM drives also are
available.

Contact Eventide, Inc., 1 Alsan Way, Little Ferry, New Jersey 07643,
201-641-1200, www.eventide.com.

AMD Opteron Processors

AMD has announced that its eighth-generation enterprise class processor core,
named Opteron, will use x86 64-bit technology. Providing high-level
performance for both existing 32-bit x86 code and new 64-bit computing,
Opteron is designed to support applications requiring large amounts of
physical and virtual memory, such as high-performance servers, database
management systems and CAD tools. Opteron also employs HyperTransport
technology, a high-speed, point-to-point link for integrated circuits that reduces
I/O bottlenecks, increases bandwidth and reduces latency. An integrated
memory controller is used to reduce memory bottlenecks.

Contact AMD, PO Box 3453, Sunnyvale, California 94088, 408-749-4000,
www.amd.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.slickedit.com
http://www.eventide.com
http://www.amd.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/110/toc110.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Game Programming with the Simple DirectMedia Layer
	Bob Pendleton
	Installing SDL
	SDL Example
	Initialize SDL
	Set the Video Mode
	Loading Resources
	The Main Loop
	Animation
	Summary

	Embedding an SQL Database with SQLite
	Michael Owens
	Architecture
	Simple API, Many Languages
	Auto-increment Columns
	BLOBs
	Thread Safety
	Scripting Interfaces
	Extending SQLite
	Administration

	A Template-Based Approach to XML Parsing in C++
	John Dubchak
	Parsing XML
	XML Parsers for C++
	Parsing XML Files Using SAX
	Policy Classes
	Mapping XML Tags to Domain Objects
	Linking our Classes Together—An XML
Façade
	Parsing an Actual XML File
	The Public Interface—Writing the Client
Application
	Compiling the Test Client

	Speeding Up the Scientific Process
	Sam Clanton
	Optimizing Code in Matlab
	Setting Up the C Environment for Matlab
	How to Code in C for Matlab

	Lighting Simulation with Radiance
	Anthony W. Kay
	So What Is Radiance?
	Installing Radiance
	Radiance Input Basics
	Rolling Your Own—A Sample Scene
	Moving Stuff Around
	More Complex Scenes
	Viewing a Scene

	Linux for Science Museums
	Len Kaplan
	The Target Audience
	The Competition
	The Development Process
	Hardware Selection
	Tool and Library Selection
	Tips and Tricks
	Conclusion
	Credits

	The Driver Model Core, Part I
	Greg Kroah-Hartman
	Buses, Devices and Classes
	Theory in Action
	The i2c Bus
	i2c Adapters
	i2c Drivers
	Conclusion

	Memory Leak Detection in C++
	Cal Erickson
	dmalloc
	ccmalloc
	NJAMD
	YAMD
	Valgrind
	mpatrol
	Insure++

	Customizing Plone
	Reuven M. Lerner
	Basic Changes
	Using CMF Controls
	Custom Skins
	Conclusion

	Using Firewall Builder, Part II
	Mick Bauer
	Local Rules on a Bastion Host
	Loopback Rules
	Bastion Host Policy
	Compiling and Installing the Policy
	Policy for a Real Firewall
	Global Rules

	Click-N-Run: an Easier Future for Customers?
	Doc Searls

	Re-energizing the Stunted PC Revolution
	Michael L. Robertson

	The Sharp Zaurus SL-C700
	Guylhem Aznar
	Specifications
	Ordering
	First Impressions
	Logging In
	The Office Suite
	Getting on the Net
	The Multimedia Suite
	Java
	Drawbacks

	SCO Linux 4
	Steve R. Hastings
	Installing
	Configuring
	Running
	Services
	Support
	A Security Problem
	Conclusion

	C++ Templates: The Complete Guide
	Michael Baxter
	Book Review: C++ Templates: The
Complete Guide by David Vandevoorde and Nicolai M.
Josuttis

	Letters
	Various
	Happy Chinese New Year, Tux
	Network Desktop Advice
	MST Helps Brazil's Poor
	“Wardialing” in 1979
	GNOME 2 Drops Features of Version 1
	HTTP User-Agent in Mozilla
	Ready to Make Movies
	Linux Training?
	We Are Not Riffraff
	Life without LJ Is
Pain
	Don't Try to Mimic Another OS
	Scribus Progress?
	Put maddog's Letter on the Web
	Freedom Threatens Some Companies

	UPFRONT
	Various
	upFront
	diff -u: What's New in Kernel
Development
	LJ Index—June 2003
	Sources
	They Said It
	Lethal Linux

	C++? Are You Crazy?
	Don Marti

	Advice, Gift of the Open Source Community
	Heather Mead

	New Products
	Heather Mead
	PRISMIQ MediaPlayer
	Red Hat Enterprise Linux ES and WS
	SnapGear PCI630
	5070 PC/104 CPU
	Visual SlickEdit 8.0
	Eventide VR778
	AMD Opteron Processors

